
RUDSEA: Recommending Updates of Dockerfiles via Software

Environment Analysis

Foyzul Hassan
University of Texas at San Antonio

USA

foyzul.hassan@utsa.edu

Rodney Rodriguez
University of Texas at San Antonio

USA

rodney.rodriguez@utsa.edu

Xiaoyin Wang
University of Texas at San Antonio

USA

xiaoyin.wang@utsa.edu

ABSTRACT

Dockerfiles are configuration files of docker images which pack-

age all dependencies of a software to enable convenient software

deployment and porting. In other words, dockerfiles list all envi-

ronment assumptions of a software application’s build and / or

execution, so they need to be frequently updated when the envi-

ronment assumptions change during fast software evolution. In

this paper, we propose RUDSEA, a novel approach to recommend

updates of dockerfiles to developers based on analyzing changes

on software environment assumptions and their impacts. Our eval-

uation on 1,199 real-world instruction updates shows that RUDSEA

can recommend correct update locations for 78.5% of the updates,

and correct code changes for 44.1% of the updates.

CCS CONCEPTS

• Software and its engineering;

KEYWORDS

Dockerfiles, Software Environment, String Analysis

ACM Reference Format:

Foyzul Hassan, Rodney Rodriguez, and Xiaoyin Wang. 2018. RUDSEA: Rec-

ommending Updates of Dockerfiles via Software Environment Analysis. In

Proceedings of the 2018 33rd ACM/IEEE International Conference on Automated

Software Engineering (ASE ’18), September 3–7, 2018, Montpellier, France.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3238147.3240470

1 INTRODUCTION

Modern software often depends on a large variety of environment

dependencies to be properly deployed and operated on production

machines. Databases, application servers, system tools, and sup-

porting files often need to be well installed and configured before

software execution, and thus may cause tremendous effort and

high risks during software deployment. This is not one-time but

continuous cost due to the fast software evolution and delivery

nowadays.

A practical approach to alleviate this effort is to use container

images. A container image is a stand-alone and executable package

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’18, September 3–7, 2018, Montpellier, France

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3240470

of a piece of software with all its environment dependencies, includ-

ing code, runtime, system tools, libraries, file structures, settings,

etc. It can be easily ported and deployed to other machines, but is

much lighter-weight than traditional virtual machines which can

achieve similar goals.

Despite the large benefit brought by container images during

software deployment, they also increase the effort of software de-

velopers because they need to generate and maintain the image

configuration files which describe how the container images can

be constructed with all environment dependencies, such as what

tools and libraries should be installed and how the file structure

should be set up. A recently study [7] on Dockerfiles by Cito et

al. shows that in top projects a docker file is averagely revised 5.8

times each year (note that there can be multiple dockerfiles in one

project, and the average and maximum number of dockerfiles per

project in our dataset is 4.9 and 41). Such a task can be tedious

and error prone because (1) modern software typically relies on

many environment dependencies, and due to fast evolution of soft-

ware requirements and underlying frameworks, such dependencies

also need to be changed very frequently; (2) some environment

changes (e.g., automatic system updates, environment changes dur-

ing installation of irrelevant software) can happen without any

developer actions so developers may even not be aware about them;

(3) developers can easily neglect environment dependencies of their

software when they set up or change them because the changes

are made in the operating system instead of the software itself; and

(4) many environment dependencies (e.g., system tools, supporting

files) cannot be checked during software compilation but only used

at runtime, so they can be easily missed during compilation and

testing (which is hardly thorough). Once an incomplete or erro-

neous image configuration file is being used, the container image

will also be incomplete or contains errors, which may cause failures

in production machines.

In this paper, we propose a novel technique, RUDSEA, to help de-

veloper update container image configuration files more easily and

with more confidence on their correctness. Specifically, based on an

existing image container file, RUDSEA first tracks the accesses to

the system environment from software source code and build con-

figuration files. Such accesses are extracted as environment-related

code scope. Then, for each code commit, RUDSEA traces its impact

on environment-related code scope and automatically determines

whether certain items in the image configuration file should be

updated accordingly. Based on the type of code impact and con-

figuration items, RUDSEA further recommends the actual updates

that should be made on the items. We implement our technique for

Docker1, which is currently the dominating framework in container

1https://www.docker.com/

796

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 06,2021 at 21:56:38 UTC from IEEE Xplore. Restrictions apply.

ASE ’18, September 3–7, 2018, Montpellier, France Foyzul Hassan, Rodney Rodriguez, and Xiaoyin Wang

images for both software industry and open source community, and

the image configuration files for docker are called dockerfiles. Notef

that, although the implementation and evaluation of this research

focus on docker images and dockerfiles, the general approach is

applicable to other container images such as Kubernetes, OCI, etc.

To evaluate RUDSEA, we carried out an experiment on a dataset

of 375 dockerfiles in 40 software projects collected from GitHub.

Our evaluation shows that RUDSEA correctly recommends update

locations for 941 of 1,199 instruction updates in dockerfiles, with a

precision of 49.8%. Furthermore, RUDSEA is able to correctly rec-

ommend the actual revision for 529 of the 1,199 dockerfile updates.

To sum up, this paper makes the following contributions.

• RUDSEA, a novel technique on automatically recommending

update locations and contents for dockerfiles during software

evolution.

• A dataset of dockerfiles and their corresponding historical

versions as benchmarks for future research on this topic.

• An empirical evaluation of RUDSEA’s effectiveness on real

world dockerfiles.

The rest of this paper is organized as follows. First, we will intro-

duce some background knowledge about dockerfiles in Section 2.

Then, we describe our approach and detailed techniques in Section

3. After we present our evaluation results in Section 4, we discuss

some related works in Section 5 and concludes in Section 6.

2 BACKGROUND

In this section, we will introduce some background knowledge

about dockerfiles. A dockerfile typically consists of three parts.

The first part (From) specifies an existing container image that the

configured image is based upon. Some examples of existing images

may include a clean Ubuntu system of a certain version, or a publicly

available image prepared with Java, Android SDK and databases.

The second part (Parser Directives) describes rules such as escape

characters on parsing the rest of the dockerfile, and is optional.

The third part (Environment Replacements) is the main part of the

dockerfile, and describes how the image should be constructed with

a sequence of instructions. The major types of instructions are

listed below.

• RUN & WORKDIR: executing a system command or exe-

cutable within the working directory specified byWORKDIR.

• CMD & ENTRYPOINT : setting the default command (CMD)

to be executed and arguments(ENTRYPOINT) to be use when

executing the container image.

• LABEL: Setting environment variables in the container im-

age.

• EXPOSE: exposing a network port in the container image.

• ENV : defining a variable to be used in the rest of the docker-

file.

• ADD / COPY : add a new directory / file in the file system of

the container image, and copy directories / files from hosting

system to the image.

From the list, we can see that three types of instructions will

be updated frequently during software evolution, which are RUN

instructions (updating versions of tools / libraries to be installed),

Label instructions (updating environment variables), and Add /

COPY instructions (changing default file structures). By contrast,

other instructions are either typically stable (e.g., EXPOSE, CMD

& ENTRYPOINT) or used only in the dockerfile itself (e.g., ENV).

Therefore, our paper focuses on the updates of RUN, LABEL, and

ADD / COPY instructions.

3 APPROACH

As shown in Figure 1, our approach consists of two major compo-

nents. The first component extracts software code that is related

to the items in dockerfiles. Here the software code base includes

source files, build configuration files, and property files. The core

part of this component is value dependency analysis, and we ap-

ply it to both old and new versions to acquire the results for both

versions. The second component receives the analysis results of

two code versions and generates the actual updates. It leverages

change impact analysis to determine whether the code change may

affect the environment-related code, and equivalence analysis to

check whether new code is added as the equivalent part of known

environment-related code.

3.1 Extracting Environment-related Code
Scope

The major challenge of extracting environment-related code is

the complicated interface between software and its environment.

While software libraries and their versions are typically listed in

build configuration files (e.g., makefile for GNU Make, pom.xml

for Maven, build.gradle for Gradle), references to file paths and

environment variables are often scattered in source code, build

configuration files, property files, etc. A thorough definition of all

possible environment interfaces requires huge manual effort, and

the definition can easily be out-of-date due to quick evolution of

the underlying development frameworks, build configuration tools,

and their various plug-ins.

To overcome this challenge, RUDSEA uses a different solution.

Our intuition is that, all the environment related code, no matter

how they interface with environment, must refer to the values in

the items of dockerfiles. Note that here we assume that the original

version of the dockerfile is a correct one. Simply put, we can search

for the values from dockerfile items in the constant string values in

various source files, since such values must be used when software

interfaces with the environment.

However, a simple keyword search does not work, because devel-

opers frequently use string concatenations and value assignments

to generate runtime values from the string constants. For example,

the dockerfile may refer to a file path /home/project-name/foo/bar,

while in the source code, the file path may be a string concatenation

expression such as "/home/" + project + "/" + module + "/bar/",

where project and module are variables for flexibility of changing

sub-projects and modules. In such cases, the original values will not

be detectable with simple keyword search, but string concatenations

and assignments need to be considered. In our initial implementa-

tion of RUDSEA, we consider only string concatenations, as we find

that other string operations are rarely used in generating library

names, file paths, and environment variable values.

Therefore, RUDSEA uses a two-stage approach, which first lo-

cates the initial string constants which are long enough substrings

of a dockerfile item. Then, RUDSEA performs value dependency

797

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 06,2021 at 21:56:38 UTC from IEEE Xplore. Restrictions apply.

RUDSEA: Recommending Updates of Dockerfiles ASE ’18, September 3–7, 2018, Montpellier, France

Environment Code
Extraction

Old Code
Version

Environment-related
Code Scopes

New Code
Version

Change Impact
Analysis

Equivalence
Analysis

Dockerfile
Item Updates

Dockerfile
Items

Figure 1: RUDSEA Overview

analysis to compute additional values through manipulating these

initial string constants. As our analysis is light weight, we need

only a parser and known string concatenation functions (which are

typically only several, and very similar among all programming

languages) for each programming language used in the software

project.

3.1.1 Locating Initial String Constants. The first step of locating

initial string constants is to extract dockerfile item values from

dockerfiles. To achieve this, we use a dockerfile parser to extract all

argument values of RUN, Label, and Add / COPY instructions. Since

RUN instructions often take Linux utility commands (e.g., mkdir,

apk-get install) as their parameters, and such commands are not

necessarily referred in the software code base, we filter out all such

commands from dockerfile item values.

After collecting the list of dockerfile item values, RUDSEA ex-

tracts all string constants from the software code base, and verifies

whether their length is over 3 and is a substring of any dockerfile

item values. If so, the string constant is added to the set of initial

string constants. In particular, given a string constant str , and a set
of dockerfile item values D, Formula 1 presents a boolean function
env which checks whether str is an initial string constant. In the
rest of the paper, the set of initial string constant is denoted as Init .

env(str) = len(str) ≥ 3 ∧ ∃d ∈ D,d .contains(str) (1)

In the formula, we use len(x) to represent the length of string
x , and x .contains(y) to represent string y is a substring of x . We

will use this check function also in our value dependency analysis

to make the abstract domain bounded. Based on the initial string

constants, RUDSEA performs value dependency analysis which

checks how string constants are combined with each other to form

more values, and tracks the string manipulation process.

3.1.2 Value Dependency Analysis. The value dependency analysis

in RUDSEA is a static analysis on string concatenations and assign-

ments within the software code base. Value dependency analysis

uses an abstract domain < Γ,T >. Γ is a set of mappings from the

set of string variables V in the software code base, to sets of string

values generated from the set of string constants (S) in the code
base. Specifically, Γ is defined in formula 2.

Γ = {var → L|var ∈ V ∧ L ⊂ S∗} (2)

For each value in L, we also track the locations of string constants
that form each value inT , so basicallyT is a mapping from a string

value in L to a set of program points.

Why RUDSEA does not use automatons to represent string

values? In our value dependency analysis, to track string concate-

nations and assignments, we use a string set domain instead of an

automaton as in string taint analysis [22] for two reasons as follows.

First, string taint analysis (and also the original string analysis [5])

uses the Mohri-Nederhof algorithm to handle strongly connected

components in string dependencies, and generates an approximate

automaton, which is a slow process and typically results in over-

approximation and affect analysis accuracy. Second, in string taint

analysis, the tracing from original string constants to the final string

values is at character level, which makes it difficult to propagate

updates from original string constants to the final string values.

Despite the accuracy, efficiency, and straightforward tracing

provided by the string value set domain, its major drawback (and

why it cannot be used in general string analysis) is that it is not

bounded. When a string variable is written within an unbounded

loop or recursive method, the possible values of the variable can be

infinite.

In the specific application scenario of RUDSEA, we find that

this problem can be solved. Our idea is to use the env function to

bound the string value set in our domain. The intuition is that, if a

possible value of a string variable does not satisfy env function, it

will not be a reference to dockerfile item values, and thus can be

discarded. Therefore, given that dockerfile item values are finite,

all string values in our abstract domain will be perfectly bounded

(without any accuracy loss regarding reference to dockerfiles) by

the dockerfile item values through env function. In particular, the

transfer functions of value dependency analysis on string initial-

ization, string assignments, and string concatenations are defined

in

Once value dependency analysis converges at a fixed point, we

can tell for each variable, what are its possible values (satisfying

env functions) and the original string constants and string con-

catenations used in forming each value. If a string variable var
contains a valueval that is identical with any dockerfile item value,

we will consider var and all the statements used in forming val
as in the environment-related code scope. Specifically, we denote

all the dockerfile item values generated from software code base

with value dependency analysis asGen, andGen is formally defined
in Formula 3. Recall that D is the set of all dockerfile item values

extracted from the dockerfiles.

Gen =
⋃

var ∈V
Γ(var) ∩ D (3)

798

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 06,2021 at 21:56:38 UTC from IEEE Xplore. Restrictions apply.

ASE ’18, September 3–7, 2018, Montpellier, France Foyzul Hassan, Rodney Rodriguez, and Xiaoyin Wang

Then the environment-related code scope can be formally de-

fined as in Formula 4. Recall that T is a part of our abstraction

domain which maps any string value in Γ to program points in-

volved in generating the value. Gen and T will be further used in

our Dockerfile change generation stage.

Scope =
⋃

val ∈Gen
T (val) (4)

3.2 Dockerfile Change Generation

Given a new software version, RUDSEA’s dockerfile change anal-

ysis tries to find out what updates on the code will affect items

in dockerfiles. Note that RUDSEA does not take single code com-

mit as its input, because dockerfiles are often not updated until

a new release so there may be many code commits in between.

Environment change analysis include the change impact analysis

which examines whether known environment-related code scope

will be affected by the changes, and the equivalence analysis which

examines whether a new environment-related code scope is added.

3.2.1 Change Impact Analysis. In the change impact analysis, RUD-

SEA will perform value dependency analysis on the new version

of the software, and map the analysis results (string constants and

statements involving string concatenations / assignments) with

that from the original version with a file difference tool. In the rest

of this section, we denote Gen, T , and Scope generated from the

value dependency analysis on the original version as Genold , Told ,
and Scopeold , while the corresponding results on the new version

as Gennew , Tnew , and Scopenew . We further define the set of vari-

ables that has at least one possible value in Gen as Gvar . We refer

to such variables as docker variables. Similarly, we have Gvarold
and Gvarnew . Note that Gvar is formally defined in Formula 5.

Gvar = {var |var ∈ V ∧ Γ(var) ∩Gen � ∅} (5)

The intuitive assumption behind our change impact analysis is as

follows. If a variable var has a dockerfile item value in its possible

value set Γ(var) (i.e., var is a docker variable), it is likely to be used
for environment interfacing. Therefore, if it holds a different set

of values in the new version, the new set of values are likely to be

also used for environment interfacing and should be added to the

dockerfile. Furthermore, if a docker variable is deleted in the new

version, the corresponding dockerfile item value may also need to

be deleted if no other docker variables hold the same value in the

new version.

As an example, consider a variable var having a possible value
"/home/foo/bar" in the old version, and the value is a dockerfile

item value. In the new version, if the same variable has a possi-

ble value "/home/foo/bar2", then it is likely that we should add

"/home/foo/bar2" to dockerfiles. In particular, if "/home/foo/

bar" is no longer in Γnew (var), we should replace "/home/foo/

bar"with "/home/foo/bar2". If "/home/foo/bar" is still in Γnew (var),
we should insert a new instruction that performs exact the same op-

eration on "/home/foo/bar2" as on "/home/foo/bar". If the variable

var is deleted in the new version, and no other docker variables has

"/home/foo/bar" in its possible values, the value should be deleted

from the dockerfile.

A complication in this process is when a old docker variable (var
in Gvarold) holds multiple values inGenold , or hold other values
that are not in Genold . In such cases, when the possible values of
var contains some new value in the new version, it is hard to tell

which old value this new value is replacing or complementing. Our

solution is to compare their forming process stored in T . Given
a new value newv in Γnew (var), we compare Tnew (newv) with
each of the old values oldv in Γold (var), and map this new value

to an old value oldv whose forming process Told (oldv) is most
similar to Tnew (newv). Specifically, we measure similarity by the
size common program points between Told (oldv) and Tnew (newv).
3.2.2 Equivalence Analysis. While change impact analysis is able

to recommend dockerfile updates related to existing dockerfile

item values. There are also other cases where a new environment

dependency is added. RUDSEA needs to also detect those cases and

find out where the insertions need to be made.

To solve this issue, we develop equivalence analysis which checks

which two program points have similar usage in the program. They

are considered equivalent program points. In our analysis, we con-

sider similar code inside one basic block or in different alternative

blocks (i.e., basic blocks within the same level in a conditional

statement). Examples of alternative blocks are if and else blocks

within one conditional statement, or case blocks within one switch

statement.

The intuition behind equivalence analysis is that if a writing

statement to a string variable equiv is inserted as a equivalent

program point of a writing statement s which writes to a docker
variable var with dockerfile item value val , the inserted writing
statement will be considered as a new docker variable, and its

possible values will be recommended for insertion into dockerfiles.

For each possible value of equiv , RUDSEA recommends an insertion

of a new instruction that performs exact the same operation on

equiv as on val .

3.3 Implementation

We implemented the value dependency analysis of RUDSEA for

Java, PHP, and Gradle. To support Maven, simple property files,

and XML property files, we further convert all dependencies and

property definition in such files as string constant assignments (i.e.,

assignment of property value to property name, and dependency

values to a special variable “dependency”), thus they can be handled

by the dockerfile-update generation component of RUDSEA.

4 EVALUATION

To evaluate the effectiveness of RUDSEA, we carried out an experi-

ment on a set of software projects with dockerfiles, and used their

version histories as ground truth to check how accurate RUDSEA’s

recommendation is. Specifically, we try to answer the following

two research questions.

• RQ1: How effective is RUDSEA on recommending update

locations in Dockerfiles?

• RQ2: How effective is RUDSEA on recommending updates

in Dockerfiles?

• RQ3:What are the major reasons causing RUDSEA to fail

on recommending correct updates?

799

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 06,2021 at 21:56:38 UTC from IEEE Xplore. Restrictions apply.

RUDSEA: Recommending Updates of Dockerfiles ASE ’18, September 3–7, 2018, Montpellier, France

In the rest of this section, we introduce the dataset construction,

evaluation metrics, evaluation results, and threats to validity in the

following four subsections, respectively.

4.1 Dataset of Dockerfiles

We collected a set of Docker-using open source projects in Github2.

In particular, we searched through top Java and PHP projects by

number of stars and check whether the project contains dockerfiles.

If so, we added the project into our dataset. We stopped after we col-

lected 20 PHP projects and 20 Java projects. Then, we checked the

history of the dockerfiles in these projects. In some projects, dock-

erfiles have their own repository, so we gathered the dockerfiles

from there. In some other projects, dockerfiles are attached with

each release (so they do not have a version history), we collected

all dockerfiles from all releases so that they form a version history.

From the version history of dockerfiles, we used diff to generate

ground truth updates of dockerfiles. We further removed all inter-

nal updates of dockerfiles (e.g., updates of comments, refactorings).

Finally, we acquired a dataset of 375 external updates of dockerfiles,

each of which can be ascribed to one or more updates in the source

code and / or build configuration files. In our evaluation, we use

the updates in the source code and / or build configuration files

as input, and the corresponding dockerfile updates as output. It

should be noted that each update may involve multiple instruction

updates. In total, the dockerfile updates include 1,199 instruction

insertions, revisions, and deletions.

One question should be studied is how large the dockerfiles

are, so that we can see how difficult the update localization is. To

answer this question, we further performed an empirical study

on our dataset. In the 40 Java and PHP projects, there are 197

dockerfiles in total. The number of dockerfiles in a single project

ranges from 1 to 41, and the average number is 4.9. The number

of valid lines (excluding blank and comment lines) in dockerfiles

varies from 1 to 64 lines, and the average is 28 lines. Since there

are often multiple docker files in one project, the average number

of dockerfile lines in a project is 137 lines, and the number of lines

ranges from 12 lines to 622 lines. Although dockerfiles are relatively

smaller than source code, they are condense formatted (i.e., there

are often multiple commands to be executed in one line), and their

dependency on the code is latent. So the localization of updates is

still a difficult problem.

4.2 Metrics

In our experiment, we use the traditional metrics of precision, recall,

and F-score to measure the effectiveness of techniques. We consider

a recommended location to be correct, if the recommended instruc-

tion to be updated is revised, deleted, or have another instruction

inserted before of after it in the real version history.

For a recommended update to be correct, we require the recom-

mendation has the same type (insertion, update, or deletion), same

instruction type, and argument value. Here we consider equivalent

updates as also correct. For example, recommending a same inser-

tion at a different location from the real insertion is also considered

correct as long as the location difference does not cause difference

in semantics.

2The dataset is available at https://sites.google.com/site/rudseaproject/

Table 1: Results on recommending update locations

Project # of Inst. Updates P (%) R (%) F (%)

PHP 720 53.9 79.7 64.3

Java 479 44.5 76.6 56.3

All 1,199 49.8 78.5 60.9

Table 2: Results on recommending updates

Project # of Inst. Updates P (%) R (%) F (%)

PHP 720 28.7 42.6 34.3

Java 479 27.0 46.3 34.1

All 1,199 28.0 44.1 34.3

4.3 Evaluation Results

To answer RQ1, we present our evaluation results in Table 1. In

the table, we present the type of projects, the number of actual

instruction updates, precision, recall, and F-score in Columns 1-5,

respectively. From the table we can see that RUDSEA is able to

achieve high recall (averagely 78.5%) and acceptable precision (av-

eragely 49.8%) in recommending update locations. Note that, since

averagely less than four updates are performed in each commit,

achieving a precision at around 50% means that developers need to

inspect averagely eight locations, and finding four of them correct.

To answer RQ2, we present the results in Table 2 with the same

format. From the table we can see that RUDSEA can achieve an av-

erage recall of 44.1% on recommending direct updates. This means

that RUDSEA can recommend exactly correct updates for 529 of

1,199 instruction updates, which may save a large amount of effort

of developers. Compared with the recall on location recommenda-

tion, we can see that for the updates RUDSEA successfully recom-

mends locations, about 56% (529) are exactly correct updates. To

answer RQ3, we studied the remaining 412 incorrect updates and

find the errors mainly fall into three categories.

First, RUDSEA may insert an instruction at a wrong location. For

simplicity, when RUDSEA finds that a docker variable has a new

value which can be mapped to a dockerfile item value v in change

impact analysis or equivalence analysis, RUDSEA always insert an

extra instruction after the instruction handlingv . Since instructions
in dockerfiles are executed in sequence, such an insertion location

may be wrong, especially when v is handled in a long instruction

concatenated with “&&”. This category accounts for 207 incorrect

updates and we believe that most of them can be resolved by more

fine-grained rules on dockerfile insertions.

Second, although RUDSEA correctly recommends an insertion,

the inserted argument may not be correct. Developers sometimes

add extra parameters to the RUN instructions they added, but RUD-

SEA is not able to recommend such parameters as it does not un-

derstand their semantics. This category accounts for 90 incorrect

updates.

Third, when a docker variable cannot be mapped to a variable

in the new version, RUDSEA simply deletes dockerfile item values

in its possible value set from dockerfile. Some complicated version

updates of the software cause difficulties in finding correct mapping

of variables between versions and thus RUDSEA may delete a value

that should be revised. This category accounts for 65 incorrect

updates and we believe that they can be partly resolved by using

more precise version diff tools.

800

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 06,2021 at 21:56:38 UTC from IEEE Xplore. Restrictions apply.

ASE ’18, September 3–7, 2018, Montpellier, France Foyzul Hassan, Rodney Rodriguez, and Xiaoyin Wang

4.4 Threats to Validity

Themajor threat to the internal validity of our evaluation is whether

the ground truth updates we used in our experiment are all correct.

Although we use real-world updates, developers may make erro-

neous updates or miss some updates, which may cause inaccuracy

in our results. Also, the implementation of RUDSEA may be not

perfect and involve bugs. The major threat to the external validity

is that our evaluation results apply to only the subject projects and

updates, or only Java / PHP projects. To reduce this threat, we use

projects from Github based on different programming languages.

5 RELATEDWORK

Studies and Analyses of Dockerfiles.With the increase of soft-

ware complexity and components, managing of software depen-

dencies [12] and test dependencies [13] has become an important

problem. Tufano et al. [19] studied on broken snapshots and likely

causes behind broken snapshots. Recent research work on scien-

tific artifact reproduction [4] discussed about the uses of Docker

to address the challenge of operating system virtualization, cross-

platform portability, and reusable software components. Cito et

al. [6] discussed about the rise of Docker adoption in industry,

and performed an empirical study on dockerfiles [7]. Rahman and

Williams [15] performed an empirical study on the type of defects

in dockerfiles. Docker is also used for lightweight virtualization

for developers for distributed application development, build and

ship [11].

Analysis of Building Configuration Files. As build configura-

tion files are getting complex and diverse, research on build configu-

ration file is getting importance that includes dependency analysis,

migration of build systems and empirical studies. To keep consis-

tency during revision, Adams et al. [1] proposed a framework to

generate dependency graph of build configuration files. Al-Kofahi

et al. [2] proposed a fault localization technique for make files, and

SYMake [18] uses a symbolic-evaluation-based technique to detect

common errors in Makefile. Following works by Zhou et al. [24]

and Al-Kofahi et al. [3] try to find configuration values exercising

different parts of makefiles. Shambaugh [16] developed a verifier

for puppet configuration script, and Sharma et al. [17] proposed

techniques to detect bad smells in configuration files. Recently, Has-

san et al. studied the reproduction of building environments [8, 9],

and performed AST level analysis to generate fix patch for build

configuration files [10] .

String analysis. String analysis [5] is a static analysis technique

to estimate possible values of string variables. String analysis has

been applied to detecting vulnerabilities [22, 23], repair web in-

terfaces [21], software internationalization [20], inter-component

communication analysis [14], etc.

6 CONCLUSION AND FUTUREWORK

In this paper, we present RUDSEA, which is a novel approach to

recommend updates for dockerfiles during software evolution. RUD-

SEA leverages tracks environment accesses from code to extract

environment-related scopes from the old software version and the

new software version. Then, RUDSEA generates updates from the

two versions of analysis results. Our evaluation on 40 projects and

1,199 real-world instruction updates shows that RUDSEA can rec-

ommend correct update locations for 78.5% of the updates, and

correct updates for 44.1% of the updates, with moderate false posi-

tives.

ACKNOWLEDGMENT.

The authors are supported in part by NSF Awards CCF-1464425,

CNS-1748109, and DHS grant DHS-14-ST-062-001.

REFERENCES
[1] B. Adams, H. Tromp, K. De Schutter, and W. De Meuter. 2007. Design recovery

and maintenance of build systems. In ICSM. 114–123.
[2] Jafar Al-Kofahi, Hung Viet Nguyen, and Tien N Nguyen. 2014. Fault localization

for Make-Based build crashes. In ICSME. IEEE, 526–530.
[3] Jafar Al-Kofahi, Tien N Nguyen, and Christian Kästner. 2016. Escaping AutoHell:

a vision for automated analysis and migration of autotools build systems. In
RELENG. 12–15.

[4] Carl Boettiger. 2015. An Introduction to Docker for Reproducible Research.
SIGOPS Oper. Syst. Rev. 49, 1 (Jan. 2015), 71–79.

[5] Aske Simon Christensen, Anders Møller, and Michael I Schwartzbach. 2003.
Precise analysis of string expressions. In SAS. Springer, 1–18.

[6] Jürgen Cito, Philipp Leitner, Thomas Fritz, and Harald C. Gall. 2015. The Making
of Cloud Applications: An Empirical Study on Software Development for the
Cloud. In FSE. 393–403.

[7] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi,
and Harald C Gall. 2017. An empirical analysis of the Docker container ecosystem
on GitHub. In MSR. IEEE, 323–333.

[8] Foyzul Hassan, Shaikh Mostafa, Edmund SL Lam, and Xiaoyin Wang. 2017. Au-
tomatic building of java projects in software repositories: A study on feasibility
and challenges. In ESEM. 38–47.

[9] Foyzul Hassan and XiaoyinWang. 2017. Mining readme files to support automatic
building of java projects in software repositories: Poster. In ICSE, Poster. 277–279.

[10] Foyzul Hassan and Xiaoyin Wang. 2018. HireBuild: An Automatic Approach to
History-Driven Repair of Build Scripts. In ICSE. 1078–1089.

[11] Muhamad Fitra Kacamarga, Bens Pardamean, and Hari Wijaya. 2015. Lightweight
Virtualization in Cloud Computing for Research. In Intelligence in the Era of Big
Data, Rolly Intan, Chi-Hung Chi, Henry N. Palit, and Leo W. Santoso (Eds.).
439–445.

[12] Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. 2017. Experience Paper:
A Study on Behavioral Backward Incompatibilities of Java Software Libraries. In
ISSTA. 215–225.

[13] Shaikh Mostafa and Xiaoyin Wang. 2014. An empirical study on the usage of
mocking frameworks in software testing. In QSIC.

[14] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick
McDaniel. 2015. Composite Constant Propagation: Application to Android Inter-
component Communication Analysis. In ICSE. 77–88.

[15] Akond Rahman and LaurieWilliams. 2018. Characterizing defective configuration
scripts used for continuous deployment. In ICST. 34–45.

[16] Rian Shambaugh, Aaron Weiss, and Arjun Guha. 2016. Rehearsal: a configuration
verification tool for puppet. In International Conference on Programming Language
Design and Implementation. 416–430.

[17] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does your
configuration code smell?. In MSR. IEEE, 189–200.

[18] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N. Nguyen.
2012. SYMake: A Build Code Analysis and Refactoring Tool for Makefiles. In
ASE. 366–369.

[19] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and back again:
Can you compile that snapshot? Journal of Soft.: Evo. and Proc., 29, 4 (2017).

[20] Xiaoyin Wang, Lu Zhang, Tao Xie, Hong Mei, and Jiasu Sun. 2009. Transtrl: An
automatic need-to-translate string locator for software internationalization. In
ICSE, Tool Demo. 555–558.

[21] Xiaoyin Wang, Lu Zhang, Tao Xie, Yingfei Xiong, and Hong Mei. 2012. Automat-
ing presentation changes in dynamic web applications via collaborative hybrid
analysis. In FSE. 16.

[22] Gary Wassermann and Zhendong Su. 2007. Sound and precise analysis of web
applications for injection vulnerabilities. In PLDI. 32–41.

[23] Fang Yu, Muath Alkhalaf, Tevfik Bultan, and Oscar H. Ibarra. 2014. Automata-
based Symbolic String Analysis for Vulnerability Detection. Form. Methods Syst.
Des. 44, 1 (Feb. 2014), 44–70.

[24] Shurui Zhou, Jafar Al-Kofahi, Tien N Nguyen, Christian Kästner, and Sarah Nadi.
2015. Extracting configuration knowledge from build files with symbolic analysis.
In RELENG. 20–23.

801

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on May 06,2021 at 21:56:38 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

