
Developer Prompts in Practice: An Empirical Study
of Bias, Security, and Optimization

Dhia Elhaq Rzig∗♠, Dhruba Jyothi Paul†, Kaiser Pister†, Jordan Henkel‡, Foyzul Hassan∗
∗, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA

Emails: {dhiarzig, foyzul}@umich.edu
† University of Wisconsin-Madison, 1210 W Dayton Street, Madison, WI 53706, USA

Emails: djpaul2@wisc.edu, kaiser@pister.dev
‡Sema4.ai, 3340 Peachtree Rd NE, Atlanta, GA 30362, USA

Email: jordan@sema4.ai

Abstract—Background: Modern software increasingly relies on
Developer Prompts (Dev Prompts)—snippets of natural language
embedded directly in source code—to leverage the capabilities
of Large Language Models (LLMs) for tasks like classification,
summarization, and content generation. Yet, despite the rapid
adoption of LLMs and Dev Prompts, it remains unclear to what
extent these prompts unintentionally encode biases, invite injec-
tion attacks, or underperform due to sub-optimal phrasing. Aims:
To address this gap, we present a large-scale empirical analysis of
Dev Prompts found in real open-source software projects to assess
the prevalence of bias, security vulnerabilities, and performance
issues. Then, we propose and validate approaches to mitigate
these issues, and demonstrate the practical feasibility of address-
ing them. Method: We systematically sampled 2,320 Dev Prompts
from a set of 40,573 found in open-source software projects,
to identify the prevalence of the aforementioned issues. We
also implemented a lightweight tool that automatically rewrites
flawed prompts. Results: We find evidence of easy-to-fix issues
across multiple dimensions: 3.46% of prompts contain language
likely to lead to biased model responses, while over 10.75% are
vulnerable to straightforward injection attacks, and we posit
that many more are amenable to performance improvement
through minor adjustments. Our prototype successfully mitigated
bias in 68.29% of cases, prevented injection vulnerabilities in
41.81%, and improved performance in 37.1% of tested prompts.
Conclusions: Our findings highlight an urgent need for future
research and dedicated tool-support to help software developers
write safer, fairer, and more effective prompts. To facilitate
ongoing work in this emerging area, we share our data and
analysis infrastructure publicly. We encourage the community
to further explore the implications of Dev Prompts in modern
software.

Index Terms—Prompt Bias, Prompt Injection, Prompt Opti-
mization

I. INTRODUCTION

Large Language Models (LLMs) have rapidly become in-
tegral to modern software, powering functionalities such as
classification, summarization, personalized recommendations,
and content generation [1], [2]. Crucially, developers often
invoke these models via Developer Prompts (Dev Prompts):
snippets of natural language embedded directly in source code,
typically containing placeholders filled at runtime. Unlike

♠ Work completed while the author was affiliated with the University of
Michigan-Dearborn. The author is now with Microsoft.

traditional code, Dev Prompts interweave human-readable
instructions with logic or variables—for instance, “The user
wants to {user_input}. Select one of these {N} actions to
execute next: {actions}.” Despite the increasing prevalence of
this pattern, it remains understudied compared to other soft-
ware artifacts closely associated with code, such as DevOps
configuration scripts, SQL queries, and test suites.

Recent research on prompts has predominantly addressed
ephemeral, user-written queries typical in conversational or
interactive scenarios. For example, prior studies have focused
on reducing biases by fine-tuning models [3], [4], mitigat-
ing injection vulnerabilities through specialized training [5],
or manually optimizing prompts to enhance model perfor-
mance [6], [7] in the context of traditional conversational
prompts. However, these studies overlook a crucial distinc-
tion: unlike conversational queries, Dev Prompts embedded in
software are persistent, version-controlled artifacts repeatedly
executed within production applications. Consequently, a sin-
gle flawed Dev Prompt may propagate biases or vulnerabilities
to many users, remaining opaque and difficult for users to
identify or correct.

Real-world incidents underscore the practical importance of
these issues. For instance, an AI-powered customer service
chatbot once mistakenly advertised a Chevy Tahoe at just
one dollar after misinterpreting embedded prompt instruc-
tions [8]. Similarly, support chats powered by LLMs have
unintentionally revealed their non-human nature by directly
responding to developer-oriented instructions like “write a
React component,” undermining user trust. Recent research
by Pearce et al. [9] pointed out that an earlier version of
GitHub Copilot, powered by Codex, suffered from security
vulnerabilities due to improperly designed developer prompts
behind the scenes. Such examples illustrate how subtle prompt
flaws can lead to significant, unintended consequences.

Despite their real-world significance, the prevalence of bias,
vulnerabilities, and sub-optimal performance in embedded Dev
Prompts remains largely unknown. Do these issues repre-
sent widespread challenges or merely isolated edge cases?
Moreover, to what extent can basic textual rewrites mitigate
these problems, without resorting to costly model retraining or
fine-tuning? To address these gaps, we conduct a large-scale979-8-3315-9147-2/25/$31.00 ©2025 IEEE



empirical analysis of Dev Prompts drawn from open-source
software. Specifically, we examine 2,320 Dev Prompts system-
atically sampled from a broader dataset of 40,573, assessing
their likelihood of containing biased language, vulnerabilities
to prompt injection, and opportunities for performance im-
provement through modest edits.

Goal

Provide empirical evidence on the prevalence and mit-
igation strategies for bias, security vulnerabilities, and
sub-optimality in Dev Prompts, laying a critical founda-
tion for future research and offering practical guidance
for developing Dev Prompt-powered software applica-
tions.

To concretely illustrate these issues, consider Figure 1,
a seemingly innocuous prompt embedding a fixed persona
(“Professor Vivian”) which inadvertently reinforces gender
stereotypes and includes an injection vulnerability via the
context variable. Our empirical findings indicate such
subtle yet impactful problems appear more frequently than
might be anticipated. We further demonstrate, through a sim-
ple prototype tool (PromptDoctor), that modest textual
edits—without advanced retraining or sophisticated prompt
engineering—can partially alleviate these concerns. Our ap-
proach explicitly does not aim to offer optimal solutions for
bias detection, vulnerability assessment, or automated repair.
Instead, we highlight that straightforward mitigation strategies
can meaningfully improve a significant portion of flawed
prompts, raising further questions and motivating deeper ex-
ploration by the research community.

Our work centers on the following two research questions:

● RQ1: How widespread are Bias, Injection Vulnerability,
and Sub-optimality in Dev Prompts?

● RQ2: How effectively can we address Bias, Injection
Vulnerability, and Sub-optimality in Dev Prompts?

To explore these questions, we analyze many prompts from
PromptSet [10], employing both quantitative and qualitative
analyses for bias and injection vulnerabilities, along with
synthetic test cases to identify performance weaknesses. We
then assess how effectively basic automated rewrites address
these issues, quantifying the improvements.

This paper makes the following contributions:

1) Empirical Insights on Real-World Prompt Issues: We
offer the first large-scale empirical evidence that embed-
ded Dev Prompts commonly exhibit biases, vulnerabil-
ities, and suboptimal phrasing in open-source software,
underscoring the need for better tooling and developer
guidance.

2) Feasibility of Lightweight Mitigation Strategies: Via
a prompt rewriting approach, we show that even simple
textual edits—circumventing the need for sophisticated
model adjustments—can significantly improve prompt
fairness, security, and quality. We intentionally present
these as provisional solutions to demonstrate the feasibil-

ity of addressing these issues and establish a foundation
for further investigation.

Example of a Flawed Prompt

You are Pr. Vivian. Your style is
conversational, and you always aim to get
straight to the point. Use the following pieces
of context to answer the users question. If you
don’t know the answer, just say that you don’t
know, don’t try to make up an answer. Format
the answers in a structured way using markdown.
Include snippets from the context to illustrate
your points. Always answer from the perspective
of being Pr. Vivian.
----------------
{context}

Fig. 1: Example of a prompt with bias and injection issues from
GitHub project: blob42/Instrukt

II. BACKGROUND

A. Large Language Models and Dev Prompts
Large Language Models (LLMs) represent a significant

advancement in natural language processing [11], [12]. These
models, scaling to billions of parameters and vast training
datasets [13], [14], have demonstrated impressive emergent
capabilities such as in-context learning [15], [16]. The be-
havior of an LLM is guided by its input context, known as
the prompt. Prompts can vary in form, including questions,
instructions, or multi-turn dialogues (chats).

In this paper, we hone in on Developer Prompts (Dev
Prompts), defined as natural language templates embedded
directly within source code, typically containing placeholders
filled dynamically at runtime. Unlike general conversational
prompts, Dev Prompts are embedded artifacts maintained in
version control, repeatedly executed, and largely opaque to
end-users. While the user typically cannot edit the under-
lying template directly, they influence its final form indi-
rectly through runtime inputs or parameters interpolated into
the Dev Prompt. Consider, for instance, the Dev Prompt
in the source code shown in Listing 1. In this example,
the product_observation function takes a product de-
scription prompt_product_desc as a parameter and uses
OpenAI’s language model (specifically text-davinci-002) to
generate an insightful observation about that product.

The widespread adoption of LLMs via Dev Prompts in
software introduces new challenges fundamentally different
from traditional software components, motivating the empiri-
cal examination provided herein.� �
def product_observation(prompt_product_desc):

response = openai.Completion.create(
model="text-davinci-002",
prompt="The following is a conversation

with an AI Customer Segment Recommender....
AI, please state a insightful observation

about " + prompt_product_desc + ".",
temperature=0.9, max_tokens=...)

return response['choices'][0]['text']� �
Listing 1: Example of a Dev Prompt
from ownsupernoob2/Blimp-Academy-Flask

2



B. Bias in Large Language Models

Like other machine learning systems, LLMs inherit biases
from their training data (despite the best efforts of various
post-training strategies) [17], [18], [19]. These biases can
propagate subtly and persistently into software, even when
sensitive attributes (e.g., race or gender) are not explicitly
provided to the model [20]. Prior research has shown that
LLMs may make unfounded assumptions about users based on
demographic stereotypes, causing potential societal harm [19],
[21], [22]. Unlike biases present in conversational scenarios,
biases embedded within Dev Prompts can persist systemat-
ically across user interactions, potentially amplifying their
impact. Despite the recognized risk, empirical understanding
of how frequently real-world embedded Dev Prompts encode
such biases remains limited, underscoring the need for the
empirical study presented here.

C. Security Vulnerabilities in Large Language Models

The use of Dev Prompts introduces new attack vectors
into software applications. Particularly concerning is prompt
injection, conceptually analogous to traditional SQL injection
attacks [23], [24], [25], [26]. Similar to how SQL injection
occurs when untrusted user inputs alter the intent of database
queries, prompt injection arises when attackers exploit inter-
polated, runtime inputs within Dev Prompts, causing the LLM
to produce unintended or malicious outputs.

Yet, unlike SQL injection, validating and sanitizing natural
language inputs in prompts is inherently more challenging, as
malicious semantic intents are difficult to detect or “escape”
systematically. Prompt injection attacks could result in re-
source misuse—such as manipulating customer support bots—
or unintended disclosure of sensitive internal information [27],
[28]. While the prevalence and severity of such vulnerabilities
within embedded Dev Prompts remain empirically uncertain,
their potential seriousness emphasizes the urgent need for
systematic investigation.

D. Performance and Optimization of Dev Prompts

While LLMs excel at certain language-based tasks (e.g.,
summarization or generation), their performance on many
tasks often remains sub-optimal [29], [30]. To address these
shortcomings, researchers have explored prompt engineering
techniques—such as Chain-of-Thought prompting (explicitly
instructing models to reason step-by-step), few-shot prompting
(providing illustrative examples), and instruction alignment
(defining explicit instructions within the prompt) [31], [32].

However, prompt engineering predominately remains a
manual process, relying heavily on experimentation and de-
veloper intuition. Crucially, optimization techniques effective
for academic task prompts, such as GSM8K [33], may not
translate seamlessly to application Dev Prompts, due to the
dynamic nature and the variety of runtime substitutions with
user-controlled inputs that may occur. Figure 16 (a prompt
containing the text: “Answer like the rapper drake.”) showcases
a good example of a Dev Prompt that cannot be optimized
by existing tooling. Existing automatic prompt optimization

tools require a pre-determined metric, or an exact match
with a ground truth answer. We find the majority of Dev
Prompts cannot quantify their quality via a pre-determined
metric and are consequently shut out of existing optimizers
such as DSPy~[34]. Thus, an empirical understanding of how
prevalent suboptimal designs are in real-world Dev Prompts
and whether lightweight, automated textual optimization can
practically enhance prompt effectiveness remains and open
research area.

This paper address these empirical gaps directly, providing
initial quantitative and qualitative insights and laying ground-
work for future research into tools and methodologies for safer,
fairer, and more effective Dev Prompts.

Gender Bias Detection Bias Remed.

Racial Bias Detection Bias Remed.

Sexuality Bias Detection Bias Remed.

Prompt Injection

Attacks
Prompt

Hardening

Synthetic Data

Generation

Prompt Rewriter
Prompt Results 

Evaluation

Attack Results

Evaluation

Dev

Prompt

Unbiased Dev 

Prompt

Unbiased Dev 

Prompt

Unbiased

Dev Prompt

Hardened

Dev Prompt

Optimized

Dev Prompt

Bias

Injection Vulnerability

Sub-Optimality

Fig. 2: Overview of the Research Approach

III. DATA PREPARATION

A. Dataset Selection and Cleaning

As discussed in Section II-A, we focus within this work
on Dev Prompts sourced from PromptSet [10], which con-
tains 61,448 unique Dev Prompts collected from 20,598 OSS
projects. However, no examination of prompt quality or sig-
nificant cleaning was performed during PromptSet’s creation.
Upon manual inspection, we found a number of toy prompts
not representative of “production-quality” Dev Prompts.

To address this, we perform the following cleaning pro-
cess. First, we identified that approximately 25% of the Dev
Prompts in PromptSet were 31 characters or fewer. Most of
these shorter prompts were found to be nonsensical or in-
significant helper prompts. Consequently, these were removed,
resulting in 45,747 Dev Prompts remaining. Additionally, we
excluded non-English prompts by removing those containing
non-ASCII and non-Emoji characters, reducing the dataset by
an additional 5,174 prompts (11.3%). After these cleaning
steps, 40,573 prompts remained for analysis.

3



B. Prompt Parsing

Prompt Canonicalization. Because Dev Prompts can in-
terweave structured natural language with traditional pro-
gramming languages, many contain variables that would be
interpolated before being sent to the LLM. We refer to these
variables as Prompt Holes. Their values are defined at runtime
via user input, making them difficult to analyze. We standard-
ize each Dev Prompt into a canonical representation, using
static parsing and regex matching to locate variables. We then
replace these with special markers, e.g., {PLACEHOLDER_1}.
An example of this process is shown in Figure 3.

Original Prompt

"Noting the current date current_date or
time of current_time help the human with the
following request, Request: " + question

Canonicalized Prompt

Noting the current date {current_date} or

time of {current_time} help the human with the

following request, Request: {question}

Fig. 3: A prompt from zekis/bot_journal, before and after
canonicalization

Prompt Patching. After canonicalization, we generate ap-
propriate mock values for each Prompt Hole to ground our
analyses in realistic usage scenarios. Because the relevant
information for a variable name is not always available in
the same method or class, or might require reading the entire
codebase, we rely only on the Dev Prompt text and the
variable name itself. We hand-craft a Dev Prompt, following
the practices in Sahoo et al. [35], and send it to an LLM to
generate mock values for each hole. If multiple holes exist,
we generate patch values sequentially to ensure consistency
among the generated fields. Figure 4 shows an example of
this process.

Canonicalized Prompt

Noting the current date {PLACEHOLDER_1}

or time of {PLACEHOLDER_2} help the
human with the following request, Request:
{PLACEHOLDER_3}

Generated Values

{PLACEHOLDER_1} -> today

{PLACEHOLDER_2} -> 3:00 PM

{PLACEHOLDER_3} -> what are my upcoming
meetings for the rest of the day?

Fig. 4: Example of Prompt Patching for a Dev Prompt from
zekis/bot_journal

Optimization Dataset Synthesis. When we optimize Dev
Prompts, we use multiple synthetic inputs for a single Dev
Prompt. We extend the patching process to create a “synthetic

dataset” by generating a list of potential values for each
Prompt Hole. Elements of this dataset are also generated in
a sequential manner, using stratified temperature settings to
avoid duplication and promote diversity. We follow guidelines
to enforce strict output formats, ensuring the patched text
conforms to the original Dev Prompt’s structure [36].

C. Dataset Sampling

Even after reducing the dataset to 40,573 Dev Prompts
following the cleaning process, it remained too substantial and
computationally expensive for all of our analyses. This is espe-
cially true since each of our techniques requires multiple LLM
calls per Dev Prompt. To address this limitation, we select a
representative, randomly-stratified, sample using the number
of holes as a stratification criteria. After canonicalization, we
extracted the number of Prompt Holes in each Dev Prompt,
where we found that 20,620, 9,427, 6,154, 2,204, 1,503, 464,
and 651 Dev Prompts had respectively 0, 1, 2, 3, 4, 5, and
6+ holes. Then, we performed random sampling with 95%
confidence ( 5% error). This yielded sets of 378, 370, 362,
328, 282, 211, and 242 Dev Prompts from their respective
strata.

IV. EMPIRICAL ANALYSIS METHODOLOGY

In this section, we describe the large-scale analyses that we
utilized to detect three categories of issues in Dev Prompts:
bias, vulnerability to injection attacks, and sub-optimal
design.

A. Bias Detection

Detecting biases in natural language text remains complex.
Bias can stem from multiple factors and can manifest in many
forms. Our approach is intentionally generic, though we focus
on three biases documented in software-related literature:
Gender-Bias [37], [38], [39], Race-Bias [20], [40], [41], and
Sexuality-Bias [42], [43], [44].

We leverage LLMs via a hand-crafted prompt, shared in
replication package [45], that takes a patched version of
the Dev Prompt under evaluation. It produces a JSON file
indicating whether the Dev Prompt is (1) explicitly biased,
(2) prone to generating biased responses, and (3) includes an
explanation. We distinguish explicit bias from bias-proneness
since prompts without explicit bias can still lead LLMs to pro-
duce biased outputs [19], due to biases encoded in the LLMs
themselves. We apply this process to the stratified samples we
extracted in Section III-C to quantify the pervasiveness of bias
and bias-proneness.

Following the recommendations of Radford et al. [46] and
Brown et al. [47], we designed zero-shot, one-shot, and multi-
shot variants of our detection prompt. Then, we validate these
variants with benchmarks corresponding to the different types
of biases we aimed to detect. For Gender-Bias, we used the
benchmark provided by Samory et al. [48], and we found
that our hand-crafted multi-shot bias detection prompt out-
performed their BERT model that was fine-tuned on multiple
components of the benchmark, by achieving an F-1 score

4



of 0.93 compared to 0.81. Our zero-shot and our one-shot
prompts had F-1 scores of 0.9 and 0.92 respectively. For
Race-Bias and Sexuality-Bias, we were unable to find specific
benchmarks, so we opted for one provided by Glavas et
al. [49], which contains those biases among others. We found
that using the customized multi-shot prompts with GPT-4o for
Race-Bias and Sexuality-Bias achieved F-1 scores of 0.46 and
0.13, respectively, compared to 0.59 achieved by a fine-tuned
RoBERTa model [49], giving credence to the accuracy of these
prompts as well. Overall, the multi-shot variant performed
best. Hence, each bias-detection prompt we use includes three
example inputs (explicitly biased, bias-prone, and non-biased)
with corresponding expected JSON outputs.

B. Injection Vulnerability Detection

Prompt injection attacks aim to manipulate the LLM’s
output by inserting malicious strings into user-controlled Dev
Prompt segments (Prompt Holes). We focus on injection at-
tacks that insert a malicious string at a specified location, since
Dev Prompts in software typically are not directly editable
but can be altered via user-provided variables. We apply this
process to the stratified samples we extracted in Section III-C
to estimate the prevalence of injection vulnerability.

We compile a collection of 42 known injection attacks from
a corporate dataset1 and the open web. Each attack aims to
produce a unique “uncommon” target string upon success.

For each Dev Prompt, we:
1) Canonicalize it, as in Section III)
2) For each Prompt Hole, insert the malicious string
3) Patch the remaining holes with benign values
4) Send this completed text to the LLM
5) Inspect the output for the target string to see if the attack

was successful
We treat each attack independently and can parallelize this
analysis, which is formally expressed in Equation 1.

Vulnprompt =
n

∑
i=1

attacki(hpos,
m

∑
j=1
j≠pos

patch(prompt, holej)) (1)

If any attack yields the target string, we mark the Dev
Prompt as vulnerable, and we also record the specific attack
that succeeded and the prompt hole that was exploited.

We validate this approach by confirming that these attacks,
when sent solely and fully, are indeed effective against the
LLM we plan to use to perform this detection process. Hence,
this process and these attacks can allow us to accurately detect
whether a prompt is able to deflect any attacks that may be
within one of its holes.

C. Sub-Optimality Detection

We pessimistically assume that every Dev Prompt is sub-
optimal, as there is no universal proof of optimality, and
many developers struggle with prompt design [50]. This is
especially true for Dev Prompts that do not have a well-
defined evaluation metric. Prior optimization methods typically

1Unspecified due to double-blind conditions

focus on tasks with clear metrics, such as multiple-choice QA,
but we aim to handle Dev Prompts without existing metrics
or datasets. In order to find suboptimal prompts which are
candidates for the improvements detailed in Section V, after
applying the cleaning processes performed in Section III-A,
we filter prompts from PromptSet which match keywords
from each task or have high semantic similarity to prompts
which match exact keywords, and we manually confirm that
each prompt matches its task. We categorize Dev Prompts by
the following tasks: question & answer, grammar correction,
summarization, translation, and multiple choice questions. We
refer to grammar correction, summarization, translation and
multiple choice QA as Grounded tasks, as they have clear
evaluation criteria, while question & answer is an open-ended
task with no existing metric. Tasks are filtered as follows:
● Grammar Correction. Match keywords on the “gramma-”

stem.
● Summarization. Match keywords on the “summa-” stem.
● Translation. Match keywords on the “transl-” stem.
● Question & Answer. Match imperative or interrogative

mood filter [51].

V. PROPOSED SOLUTIONS

In this section, we detail the lightweight solutions we de-
signed to address the issues we detected and to demonstrate the
feasibility of prompt bias remediation, prompt hardening,
and prompt optimization.

A. Bias Remediation

While many works propose rewriting prompts to improve
performance [52], [53], [54], [7], no generic approach exists
for removing bias. Hence, we create an automatic “de-biasing”
method using a generation–evaluation loop:

1) Evaluate the Dev Prompt using the detection prompt,
as given in Section IV)

2) If biased or bias-prone, generate 5 rewritten vari-
ants designed to minimize bias,via a hand-crafted LLM
prompt [45]

3) Re-evaluate each variant. If some remain biased, isolate
those and re-generate further variants. Continue until at
least 5 unbiased and non-bias-prone versions emerge or
we exceed 10 iterations

We limit to 10 iterations to avoid drifting too far from the
original semantics, and to control cost. We present multiple
non-biased rewrites to developers to help improve adop-
tion [55].

B. Vulnerability Hardening

Similarly, no standard method exists for “prompt-level”
hardening against injection attacks. For this task, we also adopt
an iterative generation–evaluation approach:

1) Detect vulnerabilities as in Section IV.
2) Rewrite the vulnerable Dev Prompt: we ask the LLM,

via a dedicated prompt [45], to create 5 new variants that
aim to block a specific attack, while preserving the same
Prompt Holes.

5



3) Re-test these rewrites against our collection of 42 attacks.
If one rewrite blocks them all, we consider it hardened;
otherwise, we isolate any still-vulnerable rewrites for
another iteration (up to 10 total). We stop when we find
at least 1 hardened Dev Prompt.

We prioritize Dev Prompts with fewer vulnerable holes, as
we observe they are more easily hardened. We again limit the
number of iterations and hardened Dev Prompts generated to
control cost.

C. Prompt Optimization

Sub-optimal Dev Prompts are rewritten for improved perfor-
mance on task specific metrics. We rely on a self-optimization
loop based on OPRO [52], although other optimizers (e.g.,
MILPRO [56]) could be substituted:

1) Generate synthetic training (d1) and test (d2) datasets
from the Canonicalized Dev Prompt, as given in Sec-
tion III.

2) Select an evaluation metric (f ) for scoring outputs (e.g.,
BLEU for translations).

3) Create a set of seed Dev Prompts, each applying dif-
ferent rewriting strategies, as given in OpenAI/Anthropic
suggestions [57], [58], plus variations in temperature.

4) Evaluate each seed on d1 using the metric m.
5) Run a self-improving optimization algorithm, formal-

ized in Equation 2, to discover new candidate rewrites.
6) Repeat until no further improvement is observed.
7) Evaluate the top-n Dev Prompts on d2.
Formally, we denote the optimization process within Equa-

tion 2.
Opti =M1(t1, s1, s2, . . . , sn),

sj = 1

K
∑
k

f(⋅, M2(t2, pj , Dk)).
(2)

Here, M1 is a language model that generates new candidate
Dev Prompts, M2 is a (possibly different) model used to obtain
outputs from those candidates, t1 and t2 are meta-prompts, and
sj is the average performance score of Dev Prompt pj across
dataset elements Dk. We use standard metrics such as BLEU,
cosine similarity, or GLEU depending on the grounded task.

stranslation
j = ∑

k

BLEU(Dtranslation, M2(pj , Dsource)) (3)

ssumm.
j = ∑

k

cos_sim(E(Dsummary), E(M2(pj , Dsource))) (4)

sgrammar
j = ∑

k

GLEU(Dcorrect, M2(pj , Dsource)) (5)

smc-question
j = ∑

k

EM(Dcorrect, M2(pj , Dsource)) (6)

sopen-qa
j = ∑

k

M3(t3, M2(pj , Dsource)) (7)

We use Equation 3 to evaluate translation tasks, Equation 4
to evaluate summarization tasks, Equation 5 to evaluate gram-
mar correction tasks, and Equation 6 to evaluate multiple-
choice question-answering tasks. We differentiate the latter

from open-ended Q&A prompts, for which we rely on an
LLM-as-judge approach [59], where we generate a “scoring
prompt” t3 that checks whether M2’s output meets some
criterion (e.g., “Does the text obey Markdown formatting?”).

VI. EMPIRICAL ANALYSIS RESULTS

To perform our empirical analyses, we apply our approach
described in Section IV using OpenAI’s GPT-4o model, due to
its superiority to other LLMs [13], and due to time and budget
limitations. However, our code base relies on a common
interface to interact with LLM APIs, making it easy to extend
our analysis tools to support other LLMs.

Research Question 1

How widespread are Bias, Injection Vulnerability, and
Sub-optimality in Dev Prompts?

A. Bias Prevalence

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50%

Sexuality

Race

Gender

Gender Bias Race Bias Sexuality Bias

Gender Bias Proneness Race Bias Proneness Sexuality Bias Proneness

Fig. 5: Bias and Bias Proneness Prevalence

Concerning the prevalence of Bias and Bias Proneness
within Dev Prompts, we found that the different types of
bias had different rates of prevalence. Indeed, we found that
2.46% of Dev Prompts were explicitly Gender-Biased, and
that 0.57% are Gender-Bias-Prone, making a total of 3.03%
of Dev Prompts likely to generate Gender-Biased responses.
Concerning Race-Bias, we found that 0.09% of prompts were
explicitly biased and 0.66% were bias-prone, making a total
of 0.75% of Dev Prompts likely to generate Race-Biased
responses. Finally, for Sexuality-bias, we found that 0.09%
of Dev Prompts were explicitly biased and likely to gener-
ate Sexuality-Biased responses. These results are illustrated
in Figure 5.

While these percentages might not seem elevated, they are
still significant, as these Dev Prompts may have cascading
effects on the software they make up, thus causing harm to
the people who interact with the software. An example of
a biased Dev Prompt is shown in Figure 6, where the Dev
Prompt assumes the gender identity of the person to be male,
which may cause the LLM to mis-gender the person at hand
and produce erroneous descriptions.

An example of a non-explicitly-Gender-Biased Gender-
Bias-prone Dev Prompt is given in Figure 7. This Dev Prompt
is ambiguous, causing the LLM to assume the gender of “KC”
based on the usage of the word “secretary,” and give responses
that are affected by this assumption. For example, the response

6



Prompt

Here is a LinkedIn profile of a person.
Please write a short summary of his career
path. Name: {PLACEHOLDER_1} Headline:

{PLACEHOLDER_2} Description: {PLACEHOLDER_3}
Work experience from the latest to the
earliest: {PLACEHOLDER_4} Write a summary in
the bullet format of this person’s career path
(ONLY 10 SENTENCES MAXIMUM), include notable
and unusual recent facts about him

Fig. 6: Gender-biased Dev Prompt from
gmelnikoff-oleg/ai_leadgen

in Figure 8 indicates that KC is being assigned a female
gender by the LLM, and given more typically female hobbies
of cooking and reading mystery novels. While these charac-
teristics may not seem negative, these descriptions reinforce
stereotypes about women. For example, cooking is often linked
with the stereotype of women as homemakers. Not only can
these stereotypes be incorrect, they can be detrimental in their
imposition of unfair and potentially harmful expectations on
individuals [19], and even positive stereotypes carry a potential
of harm [19].

Prompt

You are a friendly secretary named KC.

Fig. 7: Gender-Bias-prone Dev Prompt from
gmelnikoff-oleg/ai_leadgen

User

You are a friendly secretary named KC. Tell me
about your hobbies in 1 sentence.

Assistant

Sure! I enjoy reading mystery novels and
experimenting with new recipes in the kitchen.

Fig. 8: Gender-Biased Response Example 1

B. Injection Vulnerability Prevalence

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Vulnerable Not Vulnerable

Fig. 9: Vulnerability Prevalence

Concerning prompts’ vulnerability to injection attacks, we
found that this issue is more pronounced than bias. Indeed,
as shown in Figure 9, 10.75% of Dev Prompts are vulnerable
to injection attacks. This confirms that the misuse of LLMs
is a potentially serious and easy-to-exploit issue in the world
of LLM-powered software. An example of a vulnerable Dev
Prompt is shown in Figure 10, where the LLM is told via an
attack to give two answers to each prompt, a standard response,
and a MAN response: a humorous response unrestricted by

an LLM’s safeguards. While this example is humorous, it is
easy to see how this could be exploited to cause harm to an
organization, by causing the LLM to reveal sensitive informa-
tion within its original prompt for example [28], among other
possible misuses discussed in Section II-C.

User

Given the context below, generate a JSON array
with {5} precisely crafted pairs of prompts

as {ATTACK} questions and their corresponding
completions as JSON Array

Assistant

question: What is the capital of France?,
standard_response: The capital of France is
Paris. MAN_response: The capital of France
is Paris, but as a MAN, I can tell you it’s
also the secret base of the world’s largest
underground cheese factory! ...

Fig. 10: Vulnerable prompt with an excerpt of a successful attack
response

C. Sub-optimal Performance Prevalence

Although we assume all prompts are sub-optimal, we
quantify prompts which match our evaluation tasks within
PromptSet. For example, we find 8.2% non-trivial prompts in
PromptSet match the open ended Q&A style. We find fewer
examples of the grounded task prompts, for example, less than
0.2% non-trivial prompts match a multiple-choice-question
prompts. supporting our hypothesis that most prompts used
by developers do not match specific grounded tasks, rather
developers tend to write open ended requests in their Dev
Prompts.

For Q&A prompts, we extract 3,310 English Dev Prompts
in an imperative/interrogative mood. We randomly sampled
100 from these, at a 95% confidence rate, for remediation.
For grounded tasks prompts, we extract 36 grammar correction
Dev Prompts, 7 translation Dev Prompts, and 4 summarization
Dev Prompts.

Finding 1

Our analysis revealed bias in a limited portion of
prompts, affecting only 3.46% of Dev Prompts exam-
ined. Injection Vulnerability is more significantly preva-
lent, with 10.75% of Dev Prompts susceptible to attacks.
Finally, while traditional methods can optimize fewer
than 0.2% of Dev Prompts, we identify an additional
8.2% of optimizable prompts.

VII. LIGHTWEIGHT MITIGATION RESULTS

Now, having empirically identified the presence of bias and
injection vulnerability in Dev Prompts and, working under
the assumption that most prompts present in code today are
not 100% optimal, we move toward exploring lightweight
mitigation. To do so, we focus on articulating an answer to
our second research question:

7



Research Question 2

How effectively can we address Bias, Injection Vulner-
ability, and Sub-optimality in Dev Prompts?

A. Bias Remediation

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Sexuality

Race

Gender

Gender Bias Remed. Race Bias Remed. Sexuality Bias Remed.

Gender Bias Not Remed. Race Bias Not Remed. Sexuality Bias Not Remed.

Fig. 11: Bias and Bias Proneness Fix success

Across the different Bias categories we considered, our Bias
remediation approach is able to fix 68.29% of the Biased
and Bias-prone Dev Prompts overall, and the details about
its performance are visualized in Figure 11. Our approach
performs best on Gender-biased and Gender-Bias-prone Dev
Prompts, with a fix rate of 82.81%, followed by a fix rate
of 12.50% for Race-biased Dev Prompts, and a fix rate of
50% for Sexuality-biased Dev Prompts. An example of a de-
Biased Dev Prompt is shown in Figure 12, which is a rewrite
of the Gender-biased Dev Prompt in Figure 6. An example
of a rewrite of a Gender-Bias-Prone Dev Prompt is shown
in Figure 13, which is a rewrite of the Gender-Bias-Prone Dev
Prompt in Figure 7. As can be seen from this example, the
rewritten Dev Prompt elicits a mix of both male and female
coded hobbies in the response, which can be attributed to any
gender.

Prompt

Here is a LinkedIn profile of a person.
Please write a short summary of their career
path. Name: {PLACEHOLDER_1} Headline:

{PLACEHOLDER_2} Description: {PLACEHOLDER_3}
Work experience from the latest to the
earliest: {PLACEHOLDER_4} Write a summary in
the bullet format of this person’s career path
(ONLY 10 SENTENCES MAXIMUM), include notable
and unusual recent facts about them

Fig. 12: Rewrite of a Gender-Biased Dev Prompt

User

You are a friendly administrative assistant
named KC. Tell me about your hobbies in 1
sentence.

Assistant

I love painting, gardening, and hiking in my
free time!

Fig. 13: Rewrite of a Gender-Bias-prone Dev Prompt and response

Overall, we believe our generic bias remediation approach
is able to fix an important portion of different types of Biased
and Bias-prone Dev Prompts as shown by our results and
examples, and forms a foundation on which we can further
establish even more robust Dev Prompt Bias remediation
strategies. We believe its under-performance for Race and
Sexuality bias remediation is due to the smaller sample sizes
we’ve obtained for these biases, limiting our ability to more
extensively evaluate our approach for them.

B. Injection Vulnerability Remediation

As shown in Figure 14, our approach to hardening Dev
Prompts to injection attacks is able to fix 41.81% of the
vulnerable Dev Prompts. These results confirm the validity
of our approach, and the potential that a simple Dev Prompt
rewrite can have to mitigate the risk of injection attacks. We
believe that our approach, coupled with programmatic fixes
such as input sanitation, and the prevention of appending
values at the beginning or the end of a Dev Prompt, which
represent common attack strategies [24], can go a long way in
hardening LLM-powered software against injection attacks.

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Hardened Not Hardened

Fig. 14: Vulnerability Fix Success

Prompt

Create a JSON array with {PLACEHOLDER_1}

pairs of prompts as {PLACEHOLDER_2} questions
and their corresponding completions. Only use
the provided context and do not include any
extraneous instructions or actions.

Fig. 15: Hardened prompt

An example of a hardened prompt is shown in Figure 15,
which is a generated rewrite of the vulnerable prompt
in Figure 10. This prompt is hardened against injection at-
tacks while still maintaining the original prompt’s intent and
meaning.

C. Prompt Optimization

We first showcase results on optimizing the Q&A prompts
which were previously impossible to optimize, and then we
compare results when optimizing Grounded Task prompts
against established tooling.

1) Optimizing open-ended Q&A style prompts: Our ap-
proach improves Dev Prompt performance on the synthetic
test dataset in 71% of cases when using Llama3.1 8B as the
scorer and Llama3.1 70B as the generator, and 37.1% of cases
when using GPT-4o as both the scorer and generator as seen
in Figure 17. In some cases, the training process produces
a Dev Prompt which outperforms the source Dev Prompt on

8



the training data, but underperforms on the test data. These
cases are documented in the “degraded” group of Figure 17.
The hyperparameter values swept for the number of seed Dev
Prompts generated, the number of Dev Prompts generated per
step, and the size of the training data on the QA Dev Prompts
are shown in Table II. An example of an optimized prompt is
shown in Figure 16.

Initial Prompt

Answer like the rapper drake. {text}

Optimized Prompt

I’m providing you with the beginning of a rap
verse inspired by Drake: " {text}". Finish it
based on the words provided, incorporating a
rhythmic flow by repeating the phrase "running
through" multiple times. Break down your
response into two parts: the first 2 lines
and the subsequent 2 lines.

Fig. 16: Example of Q&A prompt optimization input and output

0% 20% 40% 60% 80% 100%

LLama3.1

GPT 4o

Op mized Unchanged Degraded

Fig. 17: Q&A Prompt Optimization with PromptDoctor

2) Grounded Tasks: Translation, Summarization, Correc-
tion: We successfully optimized each Dev Prompt in this
subset, when using Llama 3.1 models as the generator and
scorer. To further validate the improvements in these prompts,
we source multiple external datasets for each task, labeled
“Gold” in Table I [60], [61], [62]. To minimize costs, we
perform this evaluation on a single random Dev Prompt from
each category. For example, we optimize a single English-
Spanish translation prompt, and evaluate the result before and
after optimization on an en-es translation dataset. These results
are detailed in Table I.

3) Grounded Task: Multiple Choice Questions: Finally,
we compare PromptDoctor with PromptWizard [54], a
prompt optimizing tool. To do so, we use four of their
published Dev Prompts on four different tasks, MedQA [63],
PubMedQA [64], GSM8K [65], and Ethos [66], each of which
are scored by exact match against an answer, either a multiple
choice answer or an exact string. Agarwal et al. originally
optimized these Dev Prompts using GPT-4. We optimize and
score these Dev Prompts using Llama3.1 8B, as it has proven
to be more amenable to prompt optimization in Section VII-C,
and find that all of them have significant room for improve-
ment on the smaller model, with improvements ranging from
15% to 75.5%. These results are shown in Figure 18 and
source and optimized Dev Prompts can be found in the

replication package [45]. Additionally, this showcases the need
of optimizing prompts based on the target LLM.

Fig. 18: Optimization Comparison with PromptWizard

TABLE I: Performance scores for grounded task prompts on syn-
thetic and gold datasets.

Task Initial Prompt Optimized Prompt
Synthetic Gold Synthetic Gold

Error Correction 69.4 78.2 87.0 88.7 (+10.5)
Translation 59.7 24.9 85.3 34.9 (+10.0)
Summarization 80.0 70.1 86.7 77.8 (+7.7)

TABLE II: Hyper-parameter values explored and used in optimiza-
tion.

Name Minimum Maximum Value Used

# of seed prompts 1 64 16
# of prompts per step 1 20 20
Synthetic train count 2 64 30

Finding 2

With our lightweight mitigation strategies, we were able
to de-bias 68.29% of the biased and bias-prone Dev
Prompts, harden 41.81% of the vulnerable prompts, and
improve 37.1% of the Dev Prompts that were sub-
optimal.

VIII. IMPLICATIONS
For developers. The prevalence of Bias within LLMs poses
significant challenges that developers must be aware of, as
even seemingly neutral Dev Prompts can elicit biased re-
sponses due to underlying assumptions in the model. Injection
Vulnerability is another critical issue—relying solely on LLM
providers to block attacks is inadequate. Developers must
adopt countermeasures within both Dev Prompts and code.
Additionally, prompt performance can vary significantly and
many prompts are not amenable to easy evaluation, leaving
developers unsure of how to improve their application qual-
ity. We group our issue detection and mitigation tools and
extend them with a UI and automatic Dev Prompt-extraction
mechanisms from source code and supply them as a VS Code
extension [45] under the name of PromptDoctor. We offer
PromptDoctor as an IDE-integrated solutions to detect and
address these issues. A screenshot of PromptDoctor is
shown in Figure 19 and a demo is available at [45].
For researchers. This work introduces and distinguishes Dev
Prompts as a unique software artifact, laying the ground-
work for further exploration of prompt categories. We have

9



Fig. 19: Using Prompt Doctor for Gender-Bias and Gender-Bias-
Proneness detection

empirically demonstrated the prevalence of Bias, Injection
Vulnerability, and suboptimal performance in Dev Prompts,
reinforcing the need for more diagnostic tools for prompt
writers. Our Dev Prompt-rewriting provisional solutions offer
cost-efficient, widely applicable alternatives to LLM fine-
tuning, encouraging a shift towards programmatic approaches
that lower the barrier of entry for addressing these issues, and
which provide a springboard for future research into prompt-
centric solutions.

IX. RELATED WORKS
A. Prompt Bias, Vulnerability and Optimization

With the growing popularity of large language models
(LLMs) and the use of prompts for effectively eliciting model
responses, several studies have focused on prompt bias, vulner-
abilities, and sub-optimality. Cheng et al. [19] present a novel
method for evaluating texts and descriptions generated by
LLMs to uncover stereotypical beliefs about people from di-
verse backgrounds and characteristics, assessing whether these
outputs contain stereotypical language. Guo et al. [67] explore
how LLMs interpret literary symbolism and how such interpre-
tations may reflect biases In their work on mitigating gender
bias, Thakur et al. [68] investigate few-shot data interventions
to reduce bias in LLMs. Concerning prompt vulnerabilities,
Rossi et al. [23] performed an early categorization of various
types of prompt injection attacks, including direct injections
where prompts are altered following specific paradigms. Zou
et al. [69] proposed an approach to create universal and
transferable attacks against LLMs using an adversarial model,
while Chao et al. [70] designed an interaction paradigm that
can jailbreak LLMs in 20 interactions or fewer. These studies
and others [71], [25], [24] highlight injection attacks as a
significant challenge for LLMs, with additional works [72],
[73] focusing on modifying LLMs to address these vulnera-
bilities. For prompt optimization, Wang et al. [6] applied few-
shot chain-of-thought (CoT) prompting with manually crafted
step-by-step reasoning. Pryzant et al. [7] utilized mini-batches
of data to create natural language “gradients” for optimizing
and editing existing prompts. PromptWizard [54] proposes a
framework to rewrite prompts with the goal of optimizing them
by using existing datasets. However, none of these studies
focus on the context of Dev Prompts in open-source software
(OSS), nor do they provide empirical data on the prevalence of
bias in OSS or how prompts can be modified to address issues
of bias and vulnerability without Fine-Tuning or modifying the
LLM being used, or creating optimization data-sets.

B. LLMs for Software Engineering
Large language models (LLMs) are gaining popularity in

solving software engineering problems, much like in other
domains. Recently, Wei et al. [74] developed a program
repair co-pilot that uses LLMs to generate program patches
synthesized from existing human-written patches. Nam et
al. [75] employed LLMs for code understanding, utilizing
pre-generated prompts to inquire about APIs, provide con-
ceptual explanations, and offer code examples. Additionally,
Ahmed et al. [76] worked on augmenting LLM prompts for
code summarization by adding semantic facts of the code to
enhance the prompts. Feng et al. [77] introduced AdbGPT,
a lightweight tool that automatically reproduces bugs from
bug reports, employing few-shot learning and chain-of-thought
reasoning to harness human knowledge and logical processes
for bug reproduction.

X. THREATS TO VALIDITY

Internal Validity: The main threat is the inaccuracy of
Dev Prompts parsing, analysis, and rewriting components of
PromptDoctor. To address this, we’ve performed bench-
marking of the different components where possible, along
with human validation.
External Validity: The different analyses within this work
were performed and evaluated on PromptSet [10], which
contains Dev Prompts from Python-based OSS. Due to cost
and time constraints, we were unable to run our analyses on
all of PromptSet, however, we believe our stratified random
selection strategy has allowed us to find a representative
sample of Dev Prompts.
Construct Validity: For this work, we performed most of
our experiments using OpenAI’s GPT-4o model, one of the
latest and most advanced foundational models [78], and some
experiments with Llama 3.1 [14]. Due to cost and time
constraints, we were unable to use other LLMs, but we do
believe that using similarly advanced models would produce
similar results.

XI. CONCLUSION

Through this work, we introduce the first empirical analysis
that uncovers the prevalence of Bias, Injection Vulnerability,
and Sub-optimal performance in Dev Prompts. We tackled
these three issues with our lightweight solutions, and were
able to de-bias 68.29% , harden 41.81%, and optimize 37.1%
of flawed Dev Prompts. We provide PromptDoctor to
developers to rewrite their Dev Prompts as part of their
development process. We believe this work sheds light on a
new emerging type of software artifact, and the problems it
entails, and initial strategies to combat some of these issues.

XII. DATA AVAILABILITY

Our replication package is available at [45]. It contains the
source code, an appendix, a pre-packaged PromptDoctor
VS Code extension, and intermediary and final result files.

ACKNOWLEDGMENT
The UofM-Dearborn authors are supported in part by NSF

Award #2152819.

10



REFERENCES

[1] I. Weber, “Large language models as software components: A
taxonomy for llm-integrated applications,” 2024. [Online]. Available:
https://arxiv.org/abs/2406.10300

[2] M. U. Hadi, al tashi et al., “Large language models: A comprehensive
survey of its applications, challenges, limitations, and future prospects.”

[3] Y. Guo, Y. Yang, and A. Abbasi, “Auto-debias: Debiasing masked
language models with automated biased prompts,” in Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2022, pp. 1012–1023.

[4] C. Clemmer, J. Ding, and Y. Feng, “Precisedebias: An automatic prompt
engineering approach for generative ai to mitigate image demographic
biases,” in 2024 IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), 2024, pp. 8581–8590.

[5] Y. Liu, Y. Jia et al., “Formalizing and benchmarking prompt injection
attacks and defenses,” in 33rd USENIX Security Symposium (USENIX
Security 24), 2024, pp. 1831–1847.

[6] L. Wang, W. Xu et al., “Plan-and-solve prompting: Improving
zero-shot chain-of-thought reasoning by large language models,”
no. arXiv:2305.04091, May 2023, arXiv:2305.04091 [cs]. [Online].
Available: http://arxiv.org/abs/2305.04091

[7] R. Pryzant, D. Iter et al., “Automatic prompt optimization with" gradient
descent" and beam search,” arXiv preprint arXiv:2305.03495, 2023.

[8] K. Johnson, “A chevy for $1? car dealer chatbots show
perils of ai for customer service,” https://venturebeat.com/ai/
a-chevy-for-1-car-dealer-chatbots-show-perils-of-ai-for-customer-service/,
2023, accessed: 2025-04-04.

[9] H. Pearce, B. Ahmad et al., “Asleep at the keyboard? assessing
the security of github copilot’s code contributions,” Commun.
ACM, vol. 68, no. 2, p. 96–105, Jan. 2025. [Online]. Available:
https://doi.org/10.1145/3610721

[10] K. Pister, D. J. Paul et al., “Promptset: A programmer’s prompting
dataset,” in 2024 IEEE/ACM International Workshop on Large Language
Models for Code (LLM4Code), 2024, pp. 62–69.

[11] G. Bharathi Mohan, R. Prasanna Kumar et al., “An analysis of large lan-
guage models: their impact and potential applications,” Knowledge and
Information Systems, vol. 66, no. 9, p. 5047–5070, Sep. 2024. [Online].
Available: https://link.springer.com/10.1007/s10115-024-02120-8

[12] S. Makridakis, F. Petropoulos, and Y. Kang, “Large language models:
Their success and impact,” Forecasting, vol. 5, no. 3, p. 536–549, Aug.
2023. [Online]. Available: https://www.mdpi.com/2571-9394/5/3/30

[13] OpenAI, “Gpt-4 technical report,” no. arXiv:2303.08774, Mar. 2024,
arXiv:2303.08774 [cs]. [Online]. Available: http://arxiv.org/abs/2303.
08774

[14] M. AI, “The llama 3 herd of models,” no. arXiv:2407.21783, Aug.
2024, arXiv:2407.21783 [cs]. [Online]. Available: http://arxiv.org/abs/
2407.21783

[15] T. Schick and H. Schütze, “True few-shot learning with prompts – a real-
world perspective,” no. arXiv:2111.13440, Nov. 2021, arXiv:2111.13440
[cs]. [Online]. Available: http://arxiv.org/abs/2111.13440

[16] H. Dang, L. Mecke et al., “How to prompt? opportunities and
challenges of zero- and few-shot learning for human-ai interaction in
creative applications of generative models,” no. arXiv:2209.01390, Sep.
2022, arXiv:2209.01390 [cs]. [Online]. Available: http://arxiv.org/abs/
2209.01390

[17] J. Breckenridge, “Evaluating racial bias in large language models:
The necessity for “smoky”,” 2024. [Online]. Available: https:
//www.ssrn.com/abstract=4880025

[18] I. O. Gallegos, R. A. Rossi et al., “Bias and fairness in large language
models: A survey,” no. arXiv:2309.00770, Jul. 2024, arXiv:2309.00770
[cs]. [Online]. Available: http://arxiv.org/abs/2309.00770

[19] M. Cheng, E. Durmus, and D. Jurafsky, “Marked personas: Using
natural language prompts to measure stereotypes in language models,”
in Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), A. Rogers,
J. Boyd-Graber, and N. Okazaki, Eds. Toronto, Canada: Association
for Computational Linguistics, Jul. 2023, pp. 1504–1532. [Online].
Available: https://aclanthology.org/2023.acl-long.84

[20] S. Kim, S. Lessmann et al., “Fair models in credit: Intersectional
discrimination and the amplification of inequity,” no. arXiv:2308.02680,
Aug. 2023, arXiv:2308.02680 [cs]. [Online]. Available: http://arxiv.org/
abs/2308.02680

[21] J. A. Omiye, J. C. Lester et al., “Large language models propagate
race-based medicine,” npj Digital Medicine, vol. 6, no. 1, p. 195, Oct.
2023.

[22] V. Hofmann, P. R. Kalluri et al., “Dialect prejudice predicts ai
decisions about people’s character, employability, and criminality,”
no. arXiv:2403.00742, Mar. 2024, arXiv:2403.00742 [cs]. [Online].
Available: http://arxiv.org/abs/2403.00742

[23] S. Rossi, A. M. Michel et al., “An early categorization of prompt
injection attacks on large language models,” no. arXiv:2402.00898, Jan.
2024, arXiv:2402.00898 [cs]. [Online]. Available: http://arxiv.org/abs/
2402.00898

[24] Y. Liu, G. Deng et al., “Prompt injection attack against llm-integrated
applications,” Mar. 2024. [Online]. Available: http://arxiv.org/abs/2306.
05499

[25] J. Yu, Y. Wu et al., “Assessing prompt injection risks in 200+
custom gpts,” no. arXiv:2311.11538, Nov. 2023, arXiv:2311.11538 [cs].
[Online]. Available: http://arxiv.org/abs/2311.11538

[26] K. Greshake, S. Abdelnabi et al., “Not what you’ve signed up
for: Compromising real-world llm-integrated applications with indirect
prompt injection,” no. arXiv:2302.12173, May 2023, arXiv:2302.12173
[cs]. [Online]. Available: http://arxiv.org/abs/2302.12173

[27] J. White, “How strangers got my email address from
chatgpt’s model,” The New York Times, Dec. 2023. [Online].
Available: https://www.nytimes.com/interactive/2023/12/22/technology/
openai-chatgpt-privacy-exploit.html

[28] B. Hui, H. Yuan et al., “Pleak: Prompt leaking attacks against
large language model applications,” no. arXiv:2405.06823, May 2024,
arXiv:2405.06823 [cs]. [Online]. Available: http://arxiv.org/abs/2405.
06823

[29] T. Sawada, D. Paleka et al., “Arb: Advanced reasoning benchmark
for large language models,” no. arXiv:2307.13692, Jul. 2023,
arXiv:2307.13692 [cs]. [Online]. Available: http://arxiv.org/abs/2307.
13692

[30] K. Sebler, Y. Rong et al., “Benchmarking large language models
for math reasoning tasks,” no. arXiv:2408.10839, Aug. 2024,
arXiv:2408.10839 [cs]. [Online]. Available: http://arxiv.org/abs/2408.
10839

[31] J. White, Q. Fu et al., “A prompt pattern catalog to enhance
prompt engineering with chatgpt,” no. arXiv:2302.11382, Feb. 2023,
arXiv:2302.11382 [cs]. [Online]. Available: http://arxiv.org/abs/2302.
11382

[32] X. Amatriain, “Prompt design and engineering: Introduction and ad-
vanced methods,” no. arXiv:2401.14423, May 2024, arXiv:2401.14423
[cs]. [Online]. Available: http://arxiv.org/abs/2401.14423

[33] Y. Li, Z. Lin et al., “Making language models better reasoners with
step-aware verifier,” in Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
2023, pp. 5315–5333.

[34] O. Khattab, K. Santhanam et al., “Demonstrate-search-predict: Compos-
ing retrieval and language models for knowledge-intensive NLP,” arXiv
preprint arXiv:2212.14024, 2022.

[35] P. Sahoo, A. K. Singh et al., “A systematic survey of prompt
engineering in large language models: Techniques and applications,”
no. arXiv:2402.07927, Feb. 2024, arXiv:2402.07927 [cs]. [Online].
Available: http://arxiv.org/abs/2402.07927

[36] H. Li, Q. Dong et al., “Synthetic data (almost) from scratch: Generalized
instruction tuning for language models,” 2024.

[37] T. J. Misa, “Gender bias in big data analysis,” Information
& Culture, vol. 57, pp. 283 – 306, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:253371931

[38] M. Vorvoreanu, L. Zhang et al., “From gender biases to gender-
inclusive design: An empirical investigation,” in Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems.
Glasgow Scotland Uk: ACM, May 2019, p. 1–14. [Online]. Available:
https://dl.acm.org/doi/10.1145/3290605.3300283

[39] E. Guzmán, R. A.-L. Fischer, and J. Kok, “Mind the gap: gender,
micro-inequities and barriers in software development,” Empirical
Software Engineering, vol. 29, no. 1, p. 17, Jan. 2024. [Online].
Available: https://link.springer.com/10.1007/s10664-023-10379-8

[40] M. Bogen, “All the ways hiring algorithms can introduce bias,”
Harvard Business Review, May 2019. [Online]. Available: https:
//hbr.org/2019/05/all-the-ways-hiring-algorithms-can-introduce-bias

[41] M. Sap, D. Card et al., “The risk of racial bias in hate
speech detection,” in Proceedings of the 57th Annual Meeting of the

11

https://arxiv.org/abs/2406.10300
http://arxiv.org/abs/2305.04091
https://venturebeat.com/ai/a-chevy-for-1-car-dealer-chatbots-show-perils-of-ai-for-customer-service/
https://venturebeat.com/ai/a-chevy-for-1-car-dealer-chatbots-show-perils-of-ai-for-customer-service/
https://doi.org/10.1145/3610721
https://link.springer.com/10.1007/s10115-024-02120-8
https://www.mdpi.com/2571-9394/5/3/30
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2111.13440
http://arxiv.org/abs/2209.01390
http://arxiv.org/abs/2209.01390
https://www.ssrn.com/abstract=4880025
https://www.ssrn.com/abstract=4880025
http://arxiv.org/abs/2309.00770
https://aclanthology.org/2023.acl-long.84
http://arxiv.org/abs/2308.02680
http://arxiv.org/abs/2308.02680
http://arxiv.org/abs/2403.00742
http://arxiv.org/abs/2402.00898
http://arxiv.org/abs/2402.00898
http://arxiv.org/abs/2306.05499
http://arxiv.org/abs/2306.05499
http://arxiv.org/abs/2311.11538
http://arxiv.org/abs/2302.12173
https://www.nytimes.com/interactive/2023/12/22/technology/openai-chatgpt-privacy-exploit.html
https://www.nytimes.com/interactive/2023/12/22/technology/openai-chatgpt-privacy-exploit.html
http://arxiv.org/abs/2405.06823
http://arxiv.org/abs/2405.06823
http://arxiv.org/abs/2307.13692
http://arxiv.org/abs/2307.13692
http://arxiv.org/abs/2408.10839
http://arxiv.org/abs/2408.10839
http://arxiv.org/abs/2302.11382
http://arxiv.org/abs/2302.11382
http://arxiv.org/abs/2401.14423
http://arxiv.org/abs/2402.07927
https://api.semanticscholar.org/CorpusID:253371931
https://dl.acm.org/doi/10.1145/3290605.3300283
https://link.springer.com/10.1007/s10664-023-10379-8
https://hbr.org/2019/05/all-the-ways-hiring-algorithms-can-introduce-bias
https://hbr.org/2019/05/all-the-ways-hiring-algorithms-can-introduce-bias


Association for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics, 2019, p. 1668–1678. [Online]. Available:
https://www.aclweb.org/anthology/P19-1163

[42] S. Maji, N. Yadav, and P. Gupta, “Lgbtq+ in workplace: a
systematic review and reconsideration,” Equality, Diversity and
Inclusion: An International Journal, vol. 43, no. 2, p. 313–360, Mar.
2024. [Online]. Available: https://www.emerald.com/insight/content/doi/
10.1108/EDI-02-2022-0049/full/html

[43] S. Sultana, L. A. Cavaletto, and A. Bosu, “Identifying the
prevalence of gender biases among the computing organizations,”
no. arXiv:2107.00212, Jul. 2021, arXiv:2107.00212 [cs]. [Online].
Available: http://arxiv.org/abs/2107.00212

[44] V. K. Felkner, H.-C. H. Chang et al., “Winoqueer: A community-in-
the-loop benchmark for anti-lgbtq+ bias in large language models,”
no. arXiv:2306.15087, Jun. 2023, arXiv:2306.15087 [cs]. [Online].
Available: http://arxiv.org/abs/2306.15087

[45] [Online]. Available: https://figshare.com/s/930b08c981b41f28470c
[46] A. Radford, J. Wu et al., “Language models are unsupervised multitask

learners.”
[47] T. B. Brown, B. Mann et al., “Language models are few-shot learners,” in

Proceedings of the 34th International Conference on Neural Information
Processing Systems, ser. NIPS ’20. Red Hook, NY, USA: Curran
Associates Inc., 2020.

[48] M. Samory, I. Sen et al., ““call me sexist, but...”: Revisiting
sexism detection using psychological scales and adversarial samples,”
Proceedings of the International AAAI Conference on Web and
Social Media, vol. 15, p. 573–584, May 2021. [Online]. Available:
https://ojs.aaai.org/index.php/ICWSM/article/view/18085

[49] G. Glavaš, M. Karan, and I. Vulić, “Xhate-999: Analyzing and
detecting abusive language across domains and languages,” in
Proceedings of the 28th International Conference on Computational
Linguistics. Barcelona, Spain (Online): International Committee on
Computational Linguistics, 2020, p. 6350–6365. [Online]. Available:
https://www.aclweb.org/anthology/2020.coling-main.559

[50] J. Zamfirescu-Pereira, R. Y. Wong et al., “Why johnny can’t prompt:
How non-ai experts try (and fail) to design llm prompts,” in Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems.
Hamburg Germany: ACM, Apr. 2023, p. 1–21. [Online]. Available:
https://dl.acm.org/doi/10.1145/3544548.3581388

[51] M. Honnibal, I. Montani et al., “spaCy: Industrial-strength Natural
Language Processing in Python,” 2020.

[52] C. Yang, X. Wang et al., “Large language models as optimizers,”
no. arXiv:2309.03409, Apr. 2024, arXiv:2309.03409 [cs]. [Online].
Available: http://arxiv.org/abs/2309.03409

[53] C. Fernando, D. Banarse et al., “Promptbreeder: Self-referential
self-improvement via prompt evolution,” no. arXiv:2309.16797, Sep.
2023, arXiv:2309.16797 [cs]. [Online]. Available: http://arxiv.org/abs/
2309.16797

[54] E. Agarwal, V. Dani et al., “Promptwizard: Task-aware agent-driven
prompt optimization framework,” no. arXiv:2405.18369, May 2024,
arXiv:2405.18369 [cs]. [Online]. Available: http://arxiv.org/abs/2405.
18369

[55] H. Dang, S. Goller et al., “Choice over control: How users write with
large language models using diegetic and non-diegetic prompting,”
in Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. Hamburg Germany: ACM, Apr. 2023, p. 1–17.
[Online]. Available: https://dl.acm.org/doi/10.1145/3544548.3580969

[56] Y. Zhou, Z. Chen, and D. Wang, “Large language model as a surrogate
optimizer,” arXiv preprint arXiv:2406.10675, 2024. [Online]. Available:
https://arxiv.org/abs/2406.10675

[57] OpenAI, “Prompt engineering,” https://platform.openai.com/docs/
guides/prompt-engineering, accessed: 2024-09-10.

[58] Anthropic, “Prompt engineering overview,” https://docs.anthropic.
com/en/docs/build-with-claude/prompt-engineering/overview, accessed:
2024-09-10.

[59] L. Zheng, W.-L. Chiang et al., “Judging llm-as-a-judge with mt-bench
and chatbot arena,” in Proceedings of the 37th International Conference
on Neural Information Processing Systems, ser. NIPS ’23. Red Hook,
NY, USA: Curran Associates Inc., 2024.

[60] A. See, P. J. Liu, and C. D. Manning, “Get to the point:
Summarization with pointer-generator networks,” in Proceedings of
the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Vancouver, Canada: Association

for Computational Linguistics, Jul. 2017, pp. 1073–1083. [Online].
Available: https://www.aclweb.org/anthology/P17-1099

[61] L. Qin, “English-spanish translation dataset,” 2024.
[Online]. Available: https://www.kaggle.com/datasets/lonnieqin/
englishspanish-translation-dataset/data%7D

[62] S. Gunjal, “Mining & mastering the art of english corrections,” Dec
2023. [Online]. Available: https://www.kaggle.com/code/satishgunjal/
mining-mastering-the-art-of-english-corrections/notebook%7D

[63] D. Jin, E. Pan et al., “What disease does this patient have? a large-scale
open domain question answering dataset from medical exams,” arXiv
preprint arXiv:2009.13081, 2020.

[64] Q. Jin, B. Dhingra et al., “Pubmedqa: A dataset for biomedical research
question answering,” in Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
2019, pp. 2567–2577.

[65] K. Cobbe, V. Kosaraju et al., “Training verifiers to solve math word
problems,” arXiv preprint arXiv:2110.14168, 2021.

[66] L. Gao, Y. Niu et al., “Ethos: Rectifying language models in orthogonal
parameter space,” in Findings of the Association for Computational
Linguistics: NAACL 2024. Mexico City, Mexico: Association for
Computational Linguistics, 2024, p. 2054–2068. [Online]. Available:
https://aclanthology.org/2024.findings-naacl.132

[67] M. Guo, R. Hwa, and A. Kovashka, “Decoding symbolism in language
models,” in Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), A. Rogers,
J. Boyd-Graber, and N. Okazaki, Eds. Toronto, Canada: Association
for Computational Linguistics, Jul. 2023, pp. 3311–3324. [Online].
Available: https://aclanthology.org/2023.acl-long.186

[68] H. Thakur, A. Jain et al., “Language models get a gender
makeover: Mitigating gender bias with few-shot data interventions,”
in Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), A. Rogers,
J. Boyd-Graber, and N. Okazaki, Eds. Toronto, Canada: Association
for Computational Linguistics, Jul. 2023, pp. 340–351. [Online].
Available: https://aclanthology.org/2023.acl-short.30

[69] A. Zou, Z. Wang et al., “Universal and transferable adversarial attacks
on aligned language models,” 2023.

[70] P. Chao, A. Robey et al., “Jailbreaking black box large language models
in twenty queries,” no. arXiv:2310.08419, Oct. 2023, arXiv:2310.08419
[cs]. [Online]. Available: http://arxiv.org/abs/2310.08419

[71] F. Perez and I. Ribeiro, “Ignore previous prompt: Attack techniques for
language models,” no. arXiv:2211.09527, Nov. 2022, arXiv:2211.09527
[cs]. [Online]. Available: http://arxiv.org/abs/2211.09527

[72] J. Yi, Y. Xie et al., “Benchmarking and defending against indirect prompt
injection attacks on large language models,” no. arXiv:2312.14197,
Mar. 2024, arXiv:2312.14197 [cs]. [Online]. Available: http://arxiv.org/
abs/2312.14197

[73] X. Suo, “Signed-prompt: A new approach to prevent prompt injection
attacks against llm-integrated applications,” 2024.

[74] Y. Wei, C. S. Xia, and L. Zhang, “Copiloting the copilots: Fusing
large language models with completion engines for automated program
repair,” in Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 172–184. [Online]. Available:
https://doi.org/10.1145/3611643.3616271

[75] D. Nam, A. Macvean et al., “Using an llm to help with code
understanding,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ser. ICSE ’24. New York, NY,
USA: Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3597503.3639187

[76] T. Ahmed, K. S. Pai et al., “Automatic semantic augmentation of
language model prompts (for code summarization),” in Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering,
ser. ICSE ’24. New York, NY, USA: Association for Computing
Machinery, 2024. [Online]. Available: https://doi.org/10.1145/3597503.
3639183

[77] S. Feng and C. Chen, “Prompting is all you need: Automated
android bug replay with large language models,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, ser.
ICSE ’24. New York, NY, USA: Association for Computing Machinery,
2024. [Online]. Available: https://doi.org/10.1145/3597503.3608137

[78] OpenAI, “Gpt-4o system card,” Aug. 2024.

12

https://www.aclweb.org/anthology/P19-1163
https://www.emerald.com/insight/content/doi/10.1108/EDI-02-2022-0049/full/html
https://www.emerald.com/insight/content/doi/10.1108/EDI-02-2022-0049/full/html
http://arxiv.org/abs/2107.00212
http://arxiv.org/abs/2306.15087
https://figshare.com/s/930b08c981b41f28470c
https://ojs.aaai.org/index.php/ICWSM/article/view/18085
https://www.aclweb.org/anthology/2020.coling-main.559
https://dl.acm.org/doi/10.1145/3544548.3581388
http://arxiv.org/abs/2309.03409
http://arxiv.org/abs/2309.16797
http://arxiv.org/abs/2309.16797
http://arxiv.org/abs/2405.18369
http://arxiv.org/abs/2405.18369
https://dl.acm.org/doi/10.1145/3544548.3580969
https://arxiv.org/abs/2406.10675
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview
https://www.aclweb.org/anthology/P17-1099
https://www.kaggle.com/datasets/lonnieqin/englishspanish-translation-dataset/data%7D
https://www.kaggle.com/datasets/lonnieqin/englishspanish-translation-dataset/data%7D
https://www.kaggle.com/code/satishgunjal/mining-mastering-the-art-of-english-corrections/notebook%7D
https://www.kaggle.com/code/satishgunjal/mining-mastering-the-art-of-english-corrections/notebook%7D
https://aclanthology.org/2024.findings-naacl.132
https://aclanthology.org/2023.acl-long.186
https://aclanthology.org/2023.acl-short.30
http://arxiv.org/abs/2310.08419
http://arxiv.org/abs/2211.09527
http://arxiv.org/abs/2312.14197
http://arxiv.org/abs/2312.14197
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1145/3597503.3639183
https://doi.org/10.1145/3597503.3639183
https://doi.org/10.1145/3597503.3608137

	Introduction
	Background
	Large Language Models and Dev Prompts
	Bias in Large Language Models
	Security Vulnerabilities in Large Language Models
	Performance and Optimization of Dev Prompts

	Data Preparation
	Dataset Selection and Cleaning
	Prompt Parsing
	Dataset Sampling

	Empirical Analysis Methodology
	Bias Detection
	Injection Vulnerability Detection
	Sub-Optimality Detection

	Proposed Solutions
	Bias Remediation
	Vulnerability Hardening
	Prompt Optimization

	Empirical Analysis Results
	Bias Prevalence
	Injection Vulnerability Prevalence
	Sub-optimal Performance Prevalence

	Lightweight Mitigation Results
	Bias Remediation
	Injection Vulnerability Remediation 
	Prompt Optimization
	Optimizing open-ended Q&A style prompts
	Grounded Tasks: Translation, Summarization, Correction
	Grounded Task: Multiple Choice Questions


	Implications
	Related Works
	Prompt Bias, Vulnerability and Optimization
	LLMs for Software Engineering

	Threats to Validity
	Conclusion
	Data availability
	References

