
Tackling Build Failures in Continuous Integration
Foyzul Hassan

University of Texas at San Antonio, San Antonio, USA
Homepage: http://foyzulhassan.github.io/

Advisor: Xiaoyin Wang
Email: foyzul.hassan@my.utsa.edu

Abstract—In popular continuous integration(CI) practice, co-
ding is followed by building, integration and system testing,
pre-release inspection, and deploying artifacts. This can reduce
integration risk and speed up the development process. But
large number of CI build failures may interrupt the normal
software development process. So, the failures need to be analyzed
and fixed quickly. Although various automated program repair
techniques have great potential to resolve software failures, the
existing techniques mostly focus on repairing source code. So,
those techniques cannot directly help resolve software build
failures. Apart from that, a special challenge to fix build failures
in CI environment is that the failures are often involved with both
source code and build scripts. This paper outlines promising pre-
liminary work towards automatic build repair in CI environment
that involves both source code and build script. As the first step,
we conducted an empirical study on software build failures and
build fix patterns. Based on the findings of the empirical study,
we developed an approach that can automatically fix build errors
involving build scripts. We plan to extend this repair approach
considering both source code and build script. Moreover, we plan
to quantify our automatic fixes by user study and comparison
between fixes generated by our approach and actual fixes.

Index Terms—build failures, build repair, continuous integra-
tion.

I. INTRODUCTION

Due to ever-increasing nature of software requirements
and rigorous release practice, Continuous Integration (CI) [1]
is gaining more and more popularity. In CI environment,
developers merge code in the code base, followed by the
automatic software build process, test execution, and artifact
deployment. This practice allows developers to detect more
software faults earlier and also request developers to resolve
the detected faults in a timely manner to make the release
pipeline flawless. A study on Google CI [2] finds that more
than 5,500 code commits are merged to the codebase and 100
million test cases are executed per day for validation.

Within CI environment, dedicated infrastructure with dif-
ferent build systems such as Make, Ant, Maven, Gradle,
Bazel, etc. are used to automate CI tasks like compilation, test
invocation, etc. For continuous integration, developers describe
the build process through build scripts such as “build.xml”
for Ant, “pom.xml” for Maven, and “build.gradle” for Gradle.
But with the growing functionality and CI requirement, build
scripts can be very complex and may require frequent main-
tenance [3]. Our study [4] on TravisTorrent dataset [5] finds
that around 29% of CI trials fail. Seo et al. [6] also addressed
a similar issue with 37% build failure proportion at Google CI

environment. Rausch et al.[7] finds that dependency resolution,
compilation, and configuration phases account for 22% of CI
failures. On the other hand, 65% failures are categorized as
test failures and 13% as quality checking errors. Our study on
1,187 CI failures on TravisTorrent Dataset also confirms that
10.8% of CI-failure fix contains only build script revisions,
and 25.6% CI-failure contains both build script and source
code.

On the opportunity side, the scenario of CI provides rich
code commit history and build logs from previous passing
builds and current failing builds. Such information sources are
often not available in other application scenarios of repair. But
existing program repair techniques cannot be directly applied
to build failures. First, build-script repair often involves open
knowledge that does not exist in the current project, such
as adding a new dependency or incorporate static analysis.
Second, build-script repair involves build domain knowledge
on CI, build management tools and external tools. Third,
many build failures are due to environment issues and might
require a fix in multiple types of files such as source code,
configuration files, etc.

In this paper, we describe the systematic categorization of
CI build failures and techniques to avoid and repair build
failures. Through our research work, we tried to answer the
following research questions:

• (RQ1) How build failures can be classified to different
categories?

• (RQ2) Can we predict CI build failures based on commit
change analysis?

• (RQ3) To what extent we can automatically fix build
configuration files?

• (RQ4) Is it feasible to localize and repair faults in CI
environment involving heterogeneous resources?

II. RELATED WORKS

A. Study on Build Failures

On the study of building errors, Hyunmin et al. [6] perfor-
med an empirical study to categorize build errors at Google.
While Sulír et al. [7] applied text analysis techniques to
categorize build failures. McIntosh et al. [8] found interesting
insight that for modern build systems build maintenance effort
on external dependency is higher than internal dependency
management. These studies mainly focus on build failure;
but for automatic build failure resolution, we need to have



a detailed study of failure root cause and feasibility analysis
of the automatic resolution of build failures.

B. Automatic Program Repair

In recent years automatic program repair techniques have
been active research to reduce bug fixing effort. Le Goues
et al. [9] proposed GenProg, which is one of the earliest
and promising genetic programming based program repair
approach. Later D. Kim proposed PAR [10] to generate fix
candidates based on templates generated from human fixes.
Prophet [11] used a probabilistic model learned from human-
written patches to generate a new patch. Nopol [12] proposes
a test-suite based repair technique using SMT solvers. These
repair techniques can be applied to source related bug fixes.
But due to different functionality and domain, these techniques
cannot be applied directly to build repair.

III. RESEARCH APPROACH

Research in the area can be roughly divided into two broad
categories: 1) Empirical analysis of build failures, and 2)
Toolset preparation to overcome the challenges of fixing build
failures. Our RQ1 falls into the first category and the rest RQs
fall into the second category. In the following, we describe how
we answer each research question in detail.

A. Analysis of Build Failure Taxonomy and Resolution Feasi-
bility (RQ1)

Advanced build systems like Maven, Gradle, etc. provide
functionality for faster compilation, integration, and testing in
CI environment and also in a standalone environment. Despite
these functionalities, there are still difficulties to maintain the
build configuration management and fixing issues. To answer
RQ1, we plan to perform empirical studies from three aspects:
i) build failure taxonomy, ii) failure analysis from supporting
files, and iii) feasibility of automatic fix generation.
Build Failure Taxonomy: For build failure taxonomy genera-
tion, we execute build process on top Java projects maintained
by Ant, Maven„ and Gradle build management systems. With
default build command we build these projects to find out
failure cases. Based on build failure types, we classify the
build failures into three general categories: environment issues,
process issues, and project issues. Environment issues are
build failure causes due to change of build environment like
operating system dependency, third party dependency issue,
etc. From our identified environment issues, we divide the
failures into three sub-categories: platform version issues,
dependency issues, and external tools issues. Apart from
environment issues, we will also identify failures related to
process issues and project issues. Process Issues are build
failures caused by the requirement of additional steps in the
building process like required file setup and non-trivial build
command execution. Project issues are build failures caused by
defects in the project itself. These defects can either be code
defects that prevent the software from being compiled anyway,
or generalization defects that prevent the software from being
built on another machine.

Failure Analysis From Supporting Files: After identifying
build failure taxonomy, we measure for how many build
failures the root causes are explicitly mentioned supporting
files: build log file and readme file [13]. With expression-based
string analysis we can answer how many build failure causes
we can identify from these two types of supporting files.
Feasibility of Automatic Fix Generation: Based on build
failure taxonomy and fail analysis from supporting files, we
perform a feasibility study on build failure resolve techniques.
To resolve the build failures we can apply natural language
processing techniques to identify build steps and the process
to generate proper builds. Apart from that, version reverting
based on commit history can be applied to overcome platform
issues.

B. CI Build Failure Prediction Model(RQ2)

With the growing popularity of data-driven approach, re-
searchers have been working on defect prediction models
for testing and quality assurance. Xia et al. [14] proposed
build a co-change prediction model to avoid build breakage.
While Bird and Zimmerman [15] an overview of software
build error prediction model, but they did not provide detailed
analysis. These works are based on the isolated development
work environment. CI build environment is different from
than isolated environment due to distributed system in nature
and a large number of code change in tandem by different
developers. Prior work [2] on build task decomposition reports
that on average, the Google code repository receives over
5,500 code commits per day and executes 100 million test
cases to validate code changes. So, a single build breakage
can lead delay to integrate new feature or bug fix and requi-
res another code commit. For build prediction model in CI
environment we use TravisTorrent [5] dataset. TravisTorrent
dataset provides build execution information of TravisCI and
also provides commit change data. As part of the feasibility
study of CI build prediction model, we perform analysis
of commit frequency, build execution frequency and build
execution duration to find out whether build failure is creating
a bottleneck in CI environment. Based on the analysis, we use
build commit information, build error type and code change
metric to predict build outcome prediction in CI environment.
Since build process involves linking of class or object files,
we also apply AST level code change analysis to generate a
better model that can predict build outcome considering recent
code changes.

C. Build Configuration File Repair(RQ3)

Automatic program repair techniques have been active re-
search for many years. Most of the research works focus
on source code repair. We planed to extend program repair
work in the area of the build configuration file. But build
script repair has challenges over source code repair due to
build specific domain issues like dependency management,
plug-in management, etc. Apart from that build script fault
localization, fix pattern generation and patch validation can be
different due to the functionality of build scripts. We divide



this research problem into three subcategories: i) Build Fix
Template Generation, ii) Patch Candidate Generation and iii)
Patch Evaluation.
Build Fix Template Generation: To repair build failures we
need have to fix templates that can be used to resolve failures.
To get fix templates, we planned to apply history driven
technique. For a given build failure we planned to perform
failed log similarity to identify which failures are similar in
nature and with similar build failures, we can extract AST level
build script change to identify how developer fixed those issue.
With AST level change history, we generate fix templates with
node-level modification and hierarchical relationship of code
changes.
Patch Candidate Generation: After generating fix templates,
we need to localize which build script caused the failure. We
deploy lightweight fault localization based on text similarity
of failed text in build log and gradle build scripts. Based
on lightweight fault localization result, we try to fit the fix
templates and this will give has concrete patch candidates.
To improve repair time performance we also merge multiple
patch candidate and prioritize the patch candidates based
on probability of how many cases a patch candidate can
be applied in a script. Once patch candidate generation and
the ranking process will compete, we can apply those patch
candidates.
Patch Evaluation: Automatic program repair patch validation
mostly depends on test case execution result. But for build
repair, we might not have a test case. So, we leverage the
technique of build the repair validation process. After applying
each patch candidate, we validate two conditions: i) all the
source code files are converted to object file or class file
and ii) there is no error message in the log file. For a given
candidate patch if the validation conditions are successful, we
will consider that the patch is correct. Otherwise, we will try
with another candidate patch to fix the failure. We also provide
a time threshold to ensure that our approach can generate build
fixes within a justifiable time limit. If it takes more time than
the threshold time then we will consider than our proposed
approach may not generate build fix in a timely manner.

D. Fault Localization of Test and Build Failures in CI Envi-
ronment(RQ4)

Existing fault localization (FL) techniques either rely on bug
reports or test failures to locate bugs in source code [16] [17].
Apart from that, current fault localization techniques are based
on single-source type and find fault in a single type of files
(i.e., source code). But in CI build result depends on build
script, source code, configuration files, data files, etc. FL
techniques are even more complex if the application developed
in multi-language code like a mix of C and Java. To overcome
this challenge, we plan to develop a technique that will be
more generic in nature to find faults in CI environment and
this will also help us to apply build repair technique in a more
broader way. For FL we plan to use both IR-based technique
and spectrum based technique to find out fault location.

IR-Based FL: Existing IR-based techniques use bug reports
as query and source code as documents. But for build fault
localization we do not have bug report and build logs are very
lengthy in size to use as search query. Apart from that, we
want to apply FL technique to heterogeneous file types. To
overcome these challenges, we plan to apply both query op-
timization and search space optimization. Query optimization
will find the critical error text from build log files to identify
the exact search query. Using static build dependency analysis
we also plan to reduce IR search space so that we can find
the fault localization in an effective manner. We also plan to
AST level code entities to reduce terms in search documents.
Spectrum-Based FL: IR-Based FL has a limitation of not
considering run time execution information. So, we also plan
to explore Spectrum-base FL techniques to build failures.
Existing Spectrum-base fault localization techniques depend
on test case coverage to identify fault covered instruction.
Since build executions may have may and may not have test
cases, we cannot directly apply existing Spectrum-based fault
localization techniques. We plan to apply dynamic instrumen-
tation techniques to identify which source file or configuration
files are involved for the error. Based on the instrumented
execution trace we will identify potential fault locations.

IV. PRELIMINARY RESULTS AND CONTRIBUTIONS

To evaluate RQ1 we used the default build commands on
200 Java projects from GitHub. Among these 200 projects, 86
projects failed with the default build attempt. We manually
examined correct build sequences to build each of these
projects. Five projects had more than one failure. In total, we
had 91 failures to analyze. We present a detailed build failure
taxonomy from these build results. Among these 91 build
failures we identified that 31 failures are due to Environment
Issues, 46 failures are for Process Issue and project issue
creates 14 failures. We also performed an analysis to resolve
these failures. Our analysis showed that at least 57% of build
failures can be automatically resolved.

As part of RQ2, we developed a build prediction model that
uses TravisTorrent data set with build error log clustering and
AST level code change modification data to predict whether a
build will be successful or not without attempting actual build
so that the developer can get early build outcome result. With
the proposed model we can predict build outcome with an
average F-Measure over 87% on all three build systems (Ant,
Maven, Gradle) under the cross-project prediction scenario.

Our work HireBuild (History-Driven Repair of Build) Script
on automatic repair of build scripts tried to solve RQ3 research
problem. From TravisTorrent dataset, we extracted 175 build
failures for our analysis. Among these 175 build failures,
we used the 135 earlier build fixes for automatic fix-pattern
generation and the more recent 40 build failures (fixes) for
evaluation of our approach. Our experiment shows that our
approach can fix 11 of 24 reproducible build failures, or 45%
of the reproducible build failures, within a comparable time
of manual fixes. This work purely based on build scripts and
to handle more complex build failures we need to address



Build Log

Repaired 

ProjectProject

Change 

History

Build-Fix Pattern Generation Patch Candidate Generation Patch Evaluation

Commit 

Analyzer

Similar Build 

Fix Pattern

Build-Fix 

Patterns

Generic Fault 

Localizer

Patch 

List

Patch 

Candidate

Build

Execution

Build

Evaluation

Fail

Pass

Fig. 1: Overview of our planned approach

research challenges mentioned at RQ4. We are working on
the challenges of RQ4. Apart from heterogeneous build error
fix, we also planned to extend build fix data and also planned
to perform a qualitative analysis of generated fix patches.

As part of the research contribution, we made RQ2 and
RQ3 data set publicly available. We are also working to make
a repair tool available once our proposed plan on handling
build failures involving source code and build script will be
handled and evaluated. Figure 1 shows an overview of our
planned approach that can generate a build failure patch for
more complex build failures with heterogeneous file type code
changes.

V. PRIOR PUBLICATIONS

My prior papers, organized by conference, are published
in ESEM 2017 (feasibility study of automatic building [18]
and prediction of build stalls [19], ICSE Poster Track 2017
(mining readme files to guide software build [20]), and ICSE
2018 (automatic build repair [21])

ACKNOWLEDGEMENTS. Special thanks to my Ph.D. ad-
visor Xiaoyin Wang for his guidance on this research. This
work was supported by the NSF Awards CCF-1464425, CNS-
1748109 and CCF-1846467.

REFERENCES

[1] P. M. Duvall, S. Matyas, and A. Glover, Continuous integration:
improving software quality and reducing risk. Pearson Education, 2007.

[2] M. Vakilian, R. Sauciuc, J. D. Morgenthaler, and V. Mirrokni,
“Automated decomposition of build targets,” in Proceedings of the
37th International Conference on Software Engineering - Volume 1,
ser. ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 123–133.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2818754.2818772

[3] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan, “An
empirical study of build maintenance effort,” in Software Engineering
(ICSE), 2011 33rd International Conference on. IEEE, 2011, pp. 141–
150.

[4] F. Hassan and X. Wang, “Hirebuild: An automatic approach to
history-driven repair of build scripts,” in Proceedings of the 40th
International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: ACM, 2018, pp. 1078–1089. [Online]. Available:
http://doi.acm.org/10.1145/3180155.3180181

[5] M. Beller, G. Gousios, and A. Zaidman, “Travistorrent: Synthesizing
travis ci and github for full-stack research on continuous integration,”
in Proceedings of the 14th working conference on mining software
repositories, 2017.

[6] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge,
“Programmers’ build errors: A case study (at google),” in Proceedings
of the 36th International Conference on Software Engineering, ser.
ICSE 2014. New York, NY, USA: ACM, 2014, pp. 724–734. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568255

[7] M. Sulír and J. Porubän, “A quantitative study of java software
buildability,” in Proceedings of the 7th International Workshop on
Evaluation and Usability of Programming Languages and Tools, ser.
PLATEAU 2016. New York, NY, USA: ACM, 2016, pp. 17–25.
[Online]. Available: http://doi.acm.org/10.1145/3001878.3001882

[8] S. McIntosh, M. Nagappan, B. Adams, A. Mockus, and A. E. Hassan,
“A Large-Scale Empirical Study of the Relationship between Build
Technology and Build Maintenance,” Empirical Software Engineering,
vol. 20, no. 6, pp. 1587–1633, 2015.

[9] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic
method for automatic software repair,” IEEE Transactions on Software
Engineering, vol. 38, no. 1, pp. 54–72, Jan 2012.

[10] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic Patch Generation
Learned from Human-written Patches,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13. Pis-
cataway, NJ, USA: IEEE Press, 2013, pp. 802–811.

[11] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’16.
New York, NY, USA: ACM, 2016, pp. 298–312. [Online]. Available:
http://doi.acm.org/10.1145/2837614.2837617

[12] J. Xuan, M. Martinez, F. DeMarco, M. ClÃl’ment, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE Transactions on
Software Engineering, vol. 43, no. 1, pp. 34–55, Jan 2017.

[13] F. Hassan and Xiaoyin Wang, “Mining readme files to support automatic
building of java projects in software repositories,” in 2017 IEEE/ACM
39th International Conference on Software Engineering Companion
(ICSE-C), May 2017, pp. 277–279.

[14] X. Xia, D. Lo, S. McIntosh, E. Shihab, and A. E. Hassan, “Cross-
project build co-change prediction,” in 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SA-
NER), March 2015, pp. 311–320.

[15] C. Bird and T. Zimmermann, “Predicting software build errors,”
Feb. 20 2014, uS Patent App. 13/589,180. [Online]. Available:
http://www.google.ch/patents/US20140053135

[16] J. A. Jones and M. J. Harrold, “Empirical evaluation of the
tarantula automatic fault-localization technique,” in Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’05. New York, NY, USA: ACM, 2005, pp. 273–
282. [Online]. Available: http://doi.acm.org/10.1145/1101908.1101949

[17] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be
fixed? - more accurate information retrieval-based bug localization
based on bug reports,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 14–24. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337226

[18] F. Hassan, S. Mostafa, E. S. L. Lam, and X. Wang, “Automatic building
of java projects in software repositories: A study on feasibility and
challenges,” in 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), Nov 2017, pp. 38–47.

[19] F. Hassan and X. Wang, “Change-aware build prediction model for stall
avoidance in continuous integration,” in 2017 ACM/IEEE Internatio-
nal Symposium on Empirical Software Engineering and Measurement
(ESEM), Nov 2017, pp. 157–162.

[20] F. Hassan and Xiaoyin Wang, “Mining readme files to support automatic
building of java projects in software repositories,” in 2017 IEEE/ACM
39th International Conference on Software Engineering Companion
(ICSE-C), May 2017, pp. 277–279.

[21] F. Hassan and X. Wang, “Hirebuild: An automatic approach to history-
driven repair of build scripts,” in 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE), May 2018, pp. 1078–1089.


