
Automatic Building of Java Projects in Software
Repositories: A Study on Feasibility and Challenges

Foyzul Hassan*, Shaikh Mostafa, Edmund S. L. Lam, Xiaoyin Wang

Why Automatic Building?

Single Project Build
Requires to follow
lot of steps. If we

want to build 1000
projects, Bang!

Necessity of large corpus of built software
1. Large Scale Program Analysis.

I. Points-to analysis.
II. Call-graph generation.
III. Dependency Analysis. etc.

2. Mining of software artifacts.

Study Subjects

Top 200 Java Projects Based on Popularity

Build Systems We Considered

How We Can Build Automatically?

Ant • ant build

Maven • mvn compile

Gradle • gradle build

Running Default Build Command

Build With Default Build Command

99 of 200 top Java projects
cannot be built successfully
with default build commands.

Other Study Vs Our Study

Missing
Dependency

Missing JAR

Environment
Issue

Wrong Build
Option

….

Our Study

Our Study ”Automatic Building of Java Projects in Software Repositories: A Study on
Feasibility and Challenges” focuses on

Build Failure Analysis
I. Performed detailed manual analysis and building to find out and confirm the

root causes of the build failures.

II. Build Failure Hierarchy based on manual analysis.

Build Failure Fix Analysis
I. Manual analysis on how build failures fix information can be extracted.

II. Feasibility of Automatic Building.

Overview of Our Study

Running Default
Build Command

Manual Build
Failure Analysis

Failure Root Cause
Information
Extraction

Feasibility of
Automatic Build

Failure Resolution

Study Design

RQ1: What proportion of top Java projects can be successfully built
with default build commands of popular build tools?

RQ2: What are the major root causes of the observed build failures?

RQ3: How easily can root causes of build failures be identified from
readme files and build failure logs?

RQ4: What proportion of build failures can be (or have the potential to
be) automatically resolved?

RQ1: Build Status With Default Build Command

40
53

8

10125

56

5

86

11 2

13

0

50

100

150

200

250

Maven Gradle Ant Other Build System No Source Code All

Projects Built Successful Projects Failed Other/No Source Code

RQ2: Major root causes of the build failures?

We classify the build failures to 3 general categories: environment
issues, process issues, and project issues.

• Environment Issues

Environment issues are build failures caused by the change of building
environment.

• Process Issues

Process Issues are build failures caused by the requirement of additional steps in
the building process.

• Project Issues

Project issues are build failures caused by defects in the project itself.

Build Failure Hierarchy

Environment Issues Build Failures

External Tools Issue

(elasticSearch/elasticSearch:42a7a55)

A problem occurred evaluating root project ’buildSrc’.
> Gradle 2.13 is required to build elasticsearch

(Yalantis/Phoenix:188f2ec)

> Could not find com.android.tools.build: gradle:2.0.0-
alpha1.
Searched in the following locations:
https://repo1.maven.org/maven2/com/android/
tools/build/gradle/2.0.0-alpha1/gradle-2.0.0-alpha1.pom

Removed
Dependency Issue

(gocd/gocd: a3f77f9)

Execution failed for task ’:installers: agentPackageDeb’.
> A problem occurred starting process ’command ’fpm’’

Platform Version
Issue

Build Failure Hierarchy

Process Issues

(roboguice/roboguice:d96250c)

Exception in thread "pool-1-thread-1" java.lang.NoClassDefFoundError:
org/eclipse/aether/spi/connector/Transfer$State
at org.eclipse.aether.connector.wagon.WagonRepositoryConnector$GetTask.run(WagonRepositoryConnector.java:608)

Non-default Build Command.
Expecting
mvn clean install -P ’guice’

(google/iosched: 2531cbd)

A problem was found with the configuration of task ’:android:packageDebug’.
> File ’/home/~/google_iosched/android/debug.keystore’ specified for property ’
signingConfig.storeFile’ does not exist.

Require File Setup Issue

Build Failure Hierarchy

Project Issues(1/2)

(google/iosched: 2531cbd)

> Failed to apply plugin [id ’com.android.application’]
> Gradle version 2.2 is required. Current version is 2.1. If using
the gradle wrapper, try editing the distributionUrl
in ~/gradle/wrapper/gradle-wrapper.properties to gradle-2.2-
all.zip

Version Conflicts in
Configuration Files

(daimajia/AndroidSwipe-Layout: d7a5759)

> Compilation failed; see the compiler error output for details.
.../library/src/main/java/com/daimajia/swipe/SwipeLayout.java:
1327: error: illegal start of expression float willOpenPercent =
(isCloseBeforeDragged ? ...

Compilation Failure

Project Issues(2/2)

(singwhatiwanna/dynamicload-apk: d262449)

A problem occurred configuring project ’:doicommon’.
> The SDK directory ’/home/~/153-
singwhatiwanna_dynamic-load-apk/
DynamicLoadApk/D:\adt-bundle-windowsx86_
64-20130219\sdk’ does not exist.

Hard-Coded Path

(android/platform_frameworks_base: e011bf8)

> com.android.ide.common.process.ProcessException:
org.gradle.process.
internal.ExecException: Process ’command
’/home/~/android-sdk-linux/build-tools
/21.1.2/aapt’’ finished with non-zero exit value 1

Incomplete Upload

RQ3: Identifying Build Failure Cause

• Readme File

• Build Log

Build Failure Root Cause Revealed Distribution

12

1

0

1

0

10

0

0

0

0

27

1

5

1

11

1

4

2

1

1

39

2

5

2

11

11

4

2

1

1

91

19

10

2

13

33

9

3

1

1

0 10 20 30 40 50 60 70 80 90 100

All

Ver. Issue

Depend. Removal

Ex. Tools

Require File Setup

Non-DefaultCommand

Version Conflict

Comp. Error

Hard Coded Path

Incomp. Upload

All Either Build Log Readme

Most of the Non-Default Command
mentioned in Readme

Dependency Missing Failures can
be identified from Build Log

RQ4: Automatic Resolution of Build Failures

• Build Command Extraction and Prediction

• Version Reverting

• Dummy File Generation

Build Command Extraction

Build commands in readme files
/ Wiki pages can be viewed as a
type of entities and NLP Named
Entity Recognition (NER) is a
well-known task to identify a
specific type of entities.

#Building
To build this project, first time you try to build you need to run
this (requires Apache Ant 1.8 or higher and JDK 1.6):

ant -f updat_ dependencies.xml

which will setup the dependencies on intellij-core: is a part of
command line compiler and contains only necessary APIs.
idea-full: is a full blown IntelliJ IDEA Community Edition to be
used in former plugin module. Then, you need to run

ant -f build.xml

Build Command Prediction

• Readme Files are not there!!!

• We can find which target is
more like the correct building
target by calculating the
similarity between the target
name and all the extracted
commands in our training set of
857.

Build tasks

assemble - Assembles all variants of all
applications and secondary packages.
assembleAndroidTest - Assembles all the Test
applications.
assembleDebug - Assembles all Debug builds.
assembleRelease - Assembles all Release builds.
….

gradle tasks

Resolved Build Failures By Extraction and Estimation

2
3

0

5
4

1

5

15

1

21 21

0

7

18

1

26
25

1

5

1 1

7

3
4

0

5

10

15

20

25

30

Maven Gradle Ant All Target Parameter

NER Target
Estimation

All fixed Not Fixed

Target
Estimation for

Gradle

Version Reverting

• Many build failure happens due to incompatible SDK and build tools.

• Straightforward way to resolve SDK and build tools dependency is to
revert the versions of SDK and build tools from the latest version.

9

0 0 0

1 1

0 0

6

0

10

7.3

0

1 1

0

9

6.5

0

2

0 0

4

3

0

2

4

6

8

10

12

Revert 1 version Revert 2-5
versions

Revert 6-10
versions

Revert 11+
versions

Max # reverted
versions

Avg # reverted
versions

Java Maven Gradle Android

Resolved Build Failures By Version Reverting

Dummy File Generation

• In many projects, a sample local file (e.g., local.property.example) is
provided, and users can refer to it for what to be put into the local
file.

• We find that, simply generating an empty local file will resolve 7 of
the 13 require file setup build failures, and renaming the sample local
file back will resolve 1 additional build failures.

Build Failures Not Yet Analyzed

• Dependency Failure: Potential solution is to search for references to
the Jar file in other projects’ configuration files.

• Config Version Conflict failures: We need to perform in-depth analysis
of config files and their dependencies.

Lesson Learned

• It is a necessity.
• Half of the top Java projects cannot be straightforwardly built with default build

commands.

• It is feasible.
• Among the 86 projects with build failures, 52 projects can be built successfully with

different approach such as build command extraction and estimation, version
reverting etc.

• The challenges.
• Our study has also identified several build failure categories whose automatic

resolution can be difficult.

