
Automatic Building of Java Projects in Software
Repositories: A Study on Feasibility and Challenges

Foyzul Hassan1, Shaikh Mostafa1, Edmund S. L. Lam2 and Xiaoyin Wang1
1Department of Computer Science, University of Texas San Antonio
2Department of Computer Science, University of Colorado Boulder

Email: foyzul.hassan@my.utsa.edu, {shaikh.mostfa, xiaoyin.wang}@utsa.edu, edmund.lam@colorado.edu

Abstract—Despite the advancement in software build tools
such as Maven and Gradle, human involvement is still often
required in software building. To enable large-scale advanced
program analysis and data mining of software artifacts, software
engineering researchers need to have a large corpus of built
software, so automatic software building becomes essential to
improve research productivity. In this paper, we present a
feasibility study on automatic software building. Particularly, we
first put state-of-the-art build automation tools (Ant, Maven and
Gradle) to the test by automatically executing their respective
default build commands on top 200 Java projects from GitHub.
Next, we focus on the 86 projects that failed this initial automated
build attempt, manually examining and determining correct build
sequences to build each of these projects. We present a detailed
build failure taxonomy from these build results and show that
at least 57% build failures can be automatically resolved.

I. INTRODUCTION

Over the past decade, open software repositories such as
GitHub [17], Sourceforge [9] and Google Code [3] are gaining
popularity: the number of publicly available repositories have
increased tremendously, as software developers are starting
to exploit the power of communal open-source development,
from small-scale pet projects, to large-scale industrial strength
applications (e.g., Android). The availability of open software
repositories have presented the software engineering and re-
search communities with a unique opportunity: we now have
access to a large corpus of source code from a wide range of
software applications that collectively contain immensely rich
data. Even at the time of writing this paper, a large number
of software engineering techniques have been developed to
analyze and mine data (e.g., code, version history, bug reports)
from public software repositories [21] [34] [42]. While meta-
data of such projects are important, the most significant
amount of data is hidden in the syntax and semantics of
the code base. Hence, it is often necessary to apply program
analysis [39] [43] techniques to these repositories. To do so
at a large-scale, it is important that we develop techniques to
automate every step of the analysis pipeline, reducing or even
eliminating the need for human intervention.

Automating this analysis pipeline is very challenging in
general. Best practices dictate that open software repositories
store and maintain only source code of software projects,
with consensus that outputs (e.g., bytecode and binaries)
are expected to built in the local development environments.
While some program analysis techniques (e.g., PPA [18])

can be applied to just the source code of the repositories,
many useful analysis techniques (e.g., points-to analysis [28],
call-graph generation [30], string analysis [29]) depend on
either the resolution of dependencies, types, and bindings to
extract dependable information, or the build artifacts (byte-
code, program traces) as input of the analysis. Furthermore,
many well-maintained frameworks (e.g., Soot [25], Wala [6],
and LLVM [27]) require built software or a successful build
process, and a large number of program analysis techniques
are based on these frameworks. Thus, automatic building of
project repositories is without doubt, a crucial part of this
analysis pipeline.

Yet, in spite of the availability of powerful build automation
and integration tools like Ant, Maven and Gradle, the task of
building public software repositories is often not entirely an
automated endeavor in practice. In this paper, we perform a
feasibility study on automatically building software projects
downloaded from open software repositories. Specifically, we
downloaded the most popular 200 Java projects (by number
of stars) from GitHub [17], and applied to each project the
default execution command of three popular state-of-the-art
Java building tools: Maven [33], Ant [40] and Gradle [24].
We chose GitHub as the source of projects because it is
most popular hosting website for open source projects, and
it provides a standard interface for meta-data and source code
downloading. At GitHub, project users can give stars to a
project to show their endorsement, and the number of stars,
to a large extent, reflect the size of a project’s user group and
its popularity among users.

For each project with build failures, we manually examined
and uncovered the root causes of the build failures, and
manually implemented the fixes to the build scripts where
possible. Following this, we categorized all the root causes of
failures, and studied whether and how each failure category
can be automatically identified and fixed. Our study focuses
on Java projects, particularly because it is a mature and
widely adopted platform-independent programming language.
We also focus on extracting builds from build configuration
tools: Ant, Maven and Gradle as they are the three most po-
pular build tools and cover most of open-source Java projects
as identified in TravisTorrent [16] data set.

We wish also to emphasize that since detailed build in-
structions are not always available in open source projects
(as shown in our study result in Table II), most users of these

top Java projects and other similar projects in GitHub will
typically resort to using default build commands, as we did,
in the attempt to build these popular projects. Hence, it is very
likely that they will face exactly the same build failures that
we have curated here. Therefore, our study is not only useful
for automatic software building tools and software engineering
researches, but also helpful for project developers and build-
tool designers to refine their work and reduce build failures
faced by software users.

From our study, we have the following five major findings.
• Gradle and Maven are the two dominating building tools

for top Java projects. They are used in 174 of top 200
Java projects.

• 99 of 200 top Java projects cannot be built successfully
with default build commands, among which 2 do not have
source code, 11 are not using Maven, Ant or Gradle as
their building tools, and the remaining 86 projects have
various build failures.

• In our hierarchical taxonomy on the root causes of 91
detected build failures (from 86 projects), the leading
categories are backward-incompatibility of JDK and buil-
ding tools, non-default parameters in build commands,
and project defects in code / configuration files, which
accounts of 19, 33, and 14 build failures, respectively.

• Among 91 build failures, 12 have information in the
project’s readme file that guides their resolution, and 27
have information in the build failure log that guides the
identification of their root causes.

• Among 91 build failures, at least 52 can be automatically
resolved by extracting/predicting correct build commands
from readme files, exhaustive trial of JDK/build-tool
versions, and generation of dummy files.

II. STUDY DESIGN

A. Research Questions

In our feasibility study, we expect to answer the following
research questions.

• RQ1: What proportion of top Java projects can be
successfully built with default build commands of popular
build tools?

• RQ2: What are the major root causes of the observed
build failures?

• RQ3: How easily can root causes of build failures be
identified from readme files and build failure logs?

• RQ4: What proportion of build failures can be (or have
the potential to be) automatically resolved?

B. Study Setup

To perform our study, we downloaded top 200 Java projects
from GitHub ranked by the number of stars. We used popu-
larity as project selection criteria since popular projects are
more likely to be selected for large-scale software analysis and
studies. The downloading was performed as cloning the latest
commit as of Aug 30, 2016. Building of software projects
not only depends on build commands, but also depends on
the build environment (e.g., Java Compiler, build tools). Our

build environment includes Ubuntu 14.10, Java SDK 1.8.0_65,
Android SDK 24.4.1, Maven 3.3.9, Gradle 3.1, and Ant 1.9.3.
We also set environment variables for Java, Android, Ant,
Maven and Gradle runtime environments according to their
installation guides. When investigating the build failures, we
made the necessary customization to the build environment
(e.g., reverting to required version of JDK or Android SDK)
in order to resolve the respective build issues and achieve a
successful build.

III. STUDY ON SUCCESSFULNESS OF DEFAULT BUILD
COMMANDS (RQ1)

To answer RQ1, we developed a systematic way to auto-
matically apply the default build commands to each project
and determine the outcome of the build attempt. To determine
which default build command to use for each specific build
tool, our study on build instructions in readme files [8] derived
the most frequently used commands, and hence offering the
most likelihood of success: for Maven (mvn compile), Ant
(ant build), and Gradle (./gradlew and gradle build

for projects with and without wrappers respectively). A straig-
htforward way of applying build commands is to run them
in the root folder. However, we found that among 200 Java
projects for study only 35 projects contain build configuration
file directly in the root directory. Therefore, we use the
following systematic strategy to determine in which folder we
apply the default build commands. We first identify a set of
folders F that directly contain a build configuration file (i.e.,
pom.xml for Maven, build.xml for Ant, build.gradle or
gradlew.bat for Gradle.). If a folder f in F is not directly
(or transitively) contained by any other folders in F , we choose
f as the folder to apply build commands. If there are multiple
folders satisfying this condition, which indicates that multiple
sub-projects may be built independently, we choose the folder
that transitively contains most Java source files to apply build
commands. In case multiple build files present in the folder, we
use the file corresponding to the newer building system, as the
other files are more likely to be legacy files for maintenance
and in many cases older build systems are outdated to build
the project. Specifically, Gradle has priority over Maven and
Maven has priority oven Ant. Finally, we determine a build to
be successful if both two conditions are hold: 1) the exit code
of the build process is 0 and 2) no build failure messages are
in the build log .

The results of applying default build commands to top 200
projects are presented in Table I. From the table, we have
the following observations. First, Maven and Gradle are the
dominating build tools used in top Java projects from GitHub.
They collectively encompass more than 85% of the projects,
hence for automatic software building tools, it is reasonable
to focus on only these popular tools. This is also the reason
we focus on the build failures of popular build tools in our
study. Second, 86 (46%) of 187 projects using Maven, Ant
and Gradle build tools failed in the building process. This
low successful-build rate essentially shows the necessity of
more advanced features for state-of-the-art build automation

TABLE I
OVERALL RESULT OF EXECUTING DEFAULT BUILD COMMANDS

Build Maven Gradle Ant Other No Source All
Tool Code

Projects Built 40 53 8 N/A N/A 101
Successful

Projects Failed 25 56 5 N/A N/A 86
Total Projects 65 109 13 11 2 200

tools. Interestingly, since the top projects are typically well
maintained, we can naturally expect build rates to decline in
a sample of more average projects in GitHub. Third, Maven
has a higher build successful rate than Gradle. While they
share similar design ideas, we suspect that Gradle fails in
more projects because it allows more customization, and is
widely used in Android projects which are more complicated
than normal Java projects due to configuration description for
Android SDK, NDK and device information. Figure 2 partly
verified our guess. Finally, we found 13 projects in our top 200
samples containing no Ant, Maven or Gradle build scripts.
Of these, 2 projects have no source code, suggesting that
some form of filtering is necessary when processing projects
from open software repositories. The other 11 projects contain
customized build scripts written by the developers. While it is
still possible to analyze and automatically build these project,
the lack of standardization and variety of building mechanisms
are likely to pose significant challenges.

IV. A TAXONOMY OF ROOT CAUSES OF BUILD FAILURES
(RQ2)

To answer RQ2, we categorized all the build failures from
the 86 projects that failed to be built with default build
commands. To clearly confirm the root cause of the build
failures, we manually examined and resolved the respective
build issues, until we successfully built the project. During
this iterative process, we discovered 5 more build failures
that were not identified during the builds with default build
commands. They are reported after we fixed the first-seen
build failures. The reason is that, build tools (actually also
compilers) typically stop when they face a fatal error. To make
sure we are not biased to the first-seen build failures (which are
typically in the earlier stage of building process), we include
these 5 build failures into our categorization study.

Our taxonomy generated by the agreement of the first author
and the fourth author on build failures by their root causes
are presented in Figure 1. In the figure, each colored block
represents a category (or sub-category), and the blocks’ widths
indicate the number of build failures in the category. Finally,
higher level categories are linked to their direct sub-categories
with elbow lines. We classify the build failures to 3 general
categories: environment issues, process issues, and project
issues. We will detail these categories and their subcategories
in the following subsections.

A. Environment Issues

Environment issues are build failures caused by the change
of building environment. They happen when a necessary com-

ponent in the local system or a remote server becomes una-
vailable. 31 of the 91 build failures we found are environment
issues, and they fall into 3 sub-categories: platform version
issues, removed dependency, and requirement of external tools.
Platform Version Issues: This is the largest sub-category of
environment issues with 19 of 31 issues fall into it. A platform
version issue happens when the successful building of the
project relies on a specific historical version of build tools or
SDK. Interestingly, though many of these projects exhibited
recent code changes, their respective developers have chosen
to use older SDK or Build Tools. The reason can be either
some dependencies on a specific SDK or build tool version, or
developers did not feel that the upgrade was needed (or worth
his/her time). An example of platform version issue is shown
as BuildLogExample 1. In this example and all following
examples, we put the project name (repository name / project
name) and commit number at the right corner of the example
title. In this example, elasticSearch uses a Gradle feature that
became unavailable after version 2.14, so the project can only
be built with Gradle 2.13.

BuildLogExample 1 Platform Version Issue 1 (elasticSearch/elas-
ticSearch: 42a7a55)

A problem occurred evaluating root project ’
buildSrc’.

> Gradle 2.13 is required to build
elasticsearch

Actually, Build failure logs do not always reveal the
root cause of the failures. For example, Example 2
is another build failure example from Facebook Re-
bound, which shows an error when running Java in the
rebound-android-example:preDexDebug task of gradle
script, but it is very difficult to tell that this error is due to a
backward incompatibility of Java 8.

We further studied which build tool or SDK are causing
platform version issues. Among the 19 environment issues, 9
requires Java 7 SDK, so we need to downgrade Java from
8 to 7 to solve them; 6 require older Maven versions; 2
require older Gradle versions; and 2 require older Android
SDK versions.

BuildLogExample 2 Platform Version Issues 2 (facebook/rebound:
5017fc9)

* What went wrong:
Execution fail for task ’:rebound-android-

example:preDexDebug’.
> com.android.ide.common.process.

ProcessException: org.gradle.process.
internal.ExecException: Process ’command
’/usr/local/java/jdk1.8.0_65/bin/java’’
finished with non-zero exit value 1

Removed Dependency: In Maven and Gradle, dependency
Jar files are stored at central repository or developer-specified
dependency repositories. Central repositories manage archive

Build Failures: 91

Environment Issues: 31 Process Issues: 46
Project

Issues: 14

Platform

Version: 19
10 2

Java: 9 6 2 2

Require File

Setup: 13
Non-default build command: 33 9 3

Local

Prop: 11
2

Removed

Dependency

Maven

Android
Gradle KeyStore

Config Version

Conflict

External

Tools

Compilation

Error

Hard Code

Path:1

Incomplete

Upload:1

Target:276

Options

Fig. 1. Build Failure Hierarchy

files to store old versions of Jar files, but in many ca-
ses, such archives can be removed from the repository.
This removal will unfortunately break the build scripts of
any projects relying on them. 9 out of total 10 issues
on the removal of dependencies are caused by a certain
Jar file being removed from the maven central reposi-
tory. In Example 3, com.android.tools.build/gradle

2.0.0-alpha1 no longer exist in the central repository of
Maven (perhaps been replaced with a more stable version
because the version 2.0.0 does exist).

BuildLogExample 3 Removal of Dependency (Yalantis/Phoenix:
188f2ec)

> Could not find com.android.tools.build:
gradle:2.0.0-alpha1.

Searched in the following locations:
https://repo1.maven.org/maven2/com/android/

tools/build/gradle/2.0.0-alpha1/gradle
-2.0.0-alpha1.pom

https://repo1.maven.org/maven2/com/android/
tools/build/gradle/2.0.0-alpha1/gradle
-2.0.0-alpha1.jar

Actually, this type of build failures mostly happens on
software projects that are inactive for some time. Among the
10 projects failed with removal of dependency, 7 projects have
been inactive for at least 2 years, and 2 have been inactive for
at least 6 months by the time we clone the code. The remaining
1 (ACRA/acra) was active, and other versions of the project do
build, so we suspect the build failure may be due to a short-
term mismatch between configuration file and server status,
which gets fixed soon. Although the 9 projects are no longer
active, they are still popular among users and users have to
find the missing dependency files on the network to build these
projects.
External Tools: Two projects require external tools in their
build process. These external tools typically facilitate some
build steps, such as creating packages in multiple formats.
So, build failure happens because external tools are not in
the system. Example 4 shows a project calling fpm command
during the building process, and the fpm tool is not available.

BuildLogExample 4 External Tools (gocd/gocd: a3f77f9)

Execution failed for task ’:installers:
agentPackageDeb’.

> A problem occurred starting process ’command
’fpm’’

B. Process Issues

Process Issues are build failures caused by the requirement
of additional steps in the building process. To build these
projects, we need to either run a command different from
the default build command, or some additional parameters,
command executions, or settings are required. 46 of the 91
build failures we found are process issues, and they fall into
2 sub-categories as follows.
Non-default Build Command: This sub-category accounts
for 33 of the 46 process issues. These build failures happen
because the default build command is not the correct build
command required to build the project. In Example 5, we get
NoClassDefFoundError. The project is successfully built
if we enter proper the build command mvn clean install

-P ’guice’, which activates the building profile for guice.

BuildLogExample 5 Non-default build command (roboguice/ro-
boguice: d96250c)

Exception in thread "pool-1-thread-1" java.
lang.NoClassDefFoundError: org/eclipse/
aether/spi/connector/Transfer$State

at org.eclipse.aether.connector.wagon.
WagonRepositoryConnector$GetTask.run(
WagonRepositoryConnector.java:608)

BuildLogExample 6 Require File Setup (google/iosched: 2531cbd)

A problem was found with the configuration of
task ’:android:packageDebug’.

> File ’/home/~/google_iosched/android/debug.
keystore’ specified for property ’
signingConfig.storeFile’ does not exist.

Fig. 2. Non-Default Build Commands Distribution

All 3 build tools we consider defines a special type of
parameter that specify the type and phase of building to
perform (e.g., whether just clean the project, whether perform
unit testing, whether build a release or debug version of an
Android apk). These parameters are called “Targets” in Ant,
“Lifecycle Commands” in Maven, and “Tasks” in Gradle.
In the rest of the paper, we refer to such parameters as
“targets”, and other parameters as “options”. Since the default
build command (with default target) does not work, the actual
command required can be either a command with a different
target or with additional options. In our study, we found 27
build failures for the former case, and 6 build failures for the
latter case. The distribution of these build failures in different
build tools are presented in Figure 2. The figure shows that
Gradle has more failures due to different targets. The reason
may be that customized targets [4] (called tasks in Gradle) are
used more widely in Gradle.
Require File Setup: This sub-category of 13 build failures are
due to the requirement of user generated files during the build
process. The two types of required files we found are local
property files, in which the user should configure some options
or properties such as path to SDK home, and Android keystore
files, which the user should generate and sign. Example 6
shows a build failure due to the requirement of a keystore
file. It should be noted that, although the user is expected to
generate and sign a key with Java keytool, simply copying the
default debugging key from Android SDK does not affect the
correct building and execution of the project.

C. Project Issues

Project issues are build failures caused by defects in the
project itself. These defects can either be code defects that
prevent the software from being compiled anyway, or genera-
lization defects that prevent the software from being built on
another machine. There are 14 build failures falling into this
category, and we classify them into 4 sub-categories: version
conflicts in configuration files, compilation errors, hard-coded
paths, and incomplete upload.

BuildLogExample 7 Version Conflicts in Configuration Files
(google/iosched: 2531cbd)

> Failed to apply plugin [id ’com.android.
application’]

> Gradle version 2.2 is required. Current
version is 2.1. If using the gradle
wrapper, try editing the distributionUrl
in ~/gradle/wrapper/gradle-wrapper.
properties to gradle-2.2-all.zip

Version Conflicts in Configuration Files: This sub-category
contains 9 build failures which are caused by conflicts in the
version properties in build configuration files, such as wrong
gradle version defined in the wrapper file or version conflicts
between parent and child pom.xml files in Maven. It should
be noted that, since the files with correct versions already exist
on the developer’s machine, this particular build failure might
not manifest in the developer’s machine. Example 7 shows a
build failure where wrong gradle version (2.1) is specified in
the wrapper file. Since developers may already have gradle
2.2 installed on their machines, this defect is not observed on
their machines.
Compilation Errors: The 3 build failures in this category
happen due to project compilation error. The revision we
fetched may be in the middle of global changes as some earlier
version builds. Example 8 shows such a compilation error.

BuildLogExample 8 Compilation Failure (daimajia/AndroidSwipe-
Layout: d7a5759)

> Compilation failed; see the compiler error
output for details.

.../library/src/main/java/com/daimajia/swipe/
SwipeLayout.java:1327: error: illegal
start of expression

float willOpenPercent = (
isCloseBeforeDragged ? ...

Hard-Coded Path: Hard-coded path is a common mistake
preventing transplantation but it is not seen much in top
projects. We do find a hard-coded path error in one project.
The path is mentioned in project’s configuration file and the
build failure is shown in Example 9.
Incomplete Upload: For one project (Example IV-C), we
found that one of Android resource file is missing. We suspect
that the developers may forget to add the resource file into the
software repository for this revision (found in other revisions).

V. IDENTIFYING ROOT CAUSES OF BUILD FAILURES
(RQ3)

To answer question RQ3, we measure for how many build
failures the root causes are explicitly mentioned in the build
failure logs. For build-failure identification, we used regular-
expression based parser and for failure analysis we performed
manual analysis on build failures. We also check whether
there are build instructions in the readme files / Wiki pages

BuildLogExample 9 Hard-Coded Path (singwhatiwanna/dynamic-
load-apk: d262449)

A problem occurred configuring project ’:doi-
common’.

> The SDK directory ’/home/~/153-
singwhatiwanna_dynamic-load-apk/
DynamicLoadApk/D:\adt-bundle-windows-
x86_64-20130219\sdk’ does not exist.

BuildLogExample 10 Incomplete Upload (android/plat-
form_frameworks_base: e011bf8)

Execution failed for task ’:
processDebugResources’.

> com.android.ide.common.process.
ProcessException: org.gradle.process.
internal.ExecException: Process ’command
’/home/~/android-sdk-linux/build-tools
/21.1.2/aapt’’ finished with non-zero exit
value 1

of the project [22], and whether following the instructions
will avoid the build failure. Specifically, we check whether a
keyword (e.g. a platform version for platform-version issues)
or a special object (e.g., version number) is mentioned in
the build logs or readme files / Wiki pages. For example,
Example 1 is considered as being revealed in the build log,
while Example 2 is not.

Table II shows the proportion of build failures whose root
causes can be identified from readme files, and build logs,
respectively. In the table, Line 4 shows the size of the union
of build failures in Line 2 and 3, and Line 5 shows the total
number of build failures in the category for reference. Columns
2-10 presents the results for each category of build failures.
Here we use the level 3 categories as they better reflect the
property of the root cause, while level 4 categories are finer-
grained and specific to build-tools or file types. Due to space
limit, we use some abbreviations in the column names, but the
categories in the table are in the exact same order as they are
shown in Figure 1.

From the table, we made the following observations: First,
root causes of build failures are generally difficult to find.
Among 91 build failures, only 39 have their root cause or
solution (e.g., the correct build command for projects using
non-default commands) mentioned in the project readme files
or build failure logs. Second, for several build-failure catego-
ries, it is easier to find the root cause or solutions from build
log or readme files. Specifically, 11 of 13 build failures in
the Require-File-Setup category have the root cause explicitly
shown in the build log. The reason is that, when the required
file does not exist, the build tools will always report file not
found error and report the path where the required file should
be placed. Also, for 10 of 33 build failures in Non-Default-
Command category, the correct build command is mentioned
in readme files. Although the proportion is not high, it shows
the possibility of extracting the correct build command from

readme files.
It should be noted that, identification of the root cause

of a build failure can largely benefit the automatic software
building process. However, automatic software building is still
possible without knowing the root cause of the build failure.
Due to the limited types and concentrated distribution of
build failures as shown in Figure 1, it is always possible
to try solutions for different root causes until build success
or solutions / resources have been exhausted. For example,
the automatic building tool may always try different build
command targets, and recent versions of built tools / platforms
to resolve build failures. Also, the vague relations between
build logs and root causes, although hard to understand, may
be caught by data mining techniques. Recommended root
causes from build logs can save much time for automatic
building tools by reducing solutions.

VI. AUTOMATIC RESOLUTION OF BUILD FAILURES (RQ4)

To answer question RQ4, for each category of build failures,
we study whether they can be automatically resolved with
heuristics. Specifically, we performed 3 studies to show the
feasibility of automatic resolution for 3 major categories
of build failures: Non-Default Command, Platform Version
Issues, and Require File Setup. For the 65 build failures
from these 3 categories, we are able to build 53 of them
automatically which are cross validated with manual build.

A. Build Command Extraction and Prediction

To resolve the build failures caused by non-default build
commands, we need to find the correct build command to
execute. Table II shows that about 1/3 of projects have their
correct build command in readme files / Wiki pages, which
leads us to check the possibility of extracting commands
directly from them.

Named Entity Recognition (NER) [15] is a well-known
task to identify a specific type of entities such as people’s
name, location from natural language texts. It is supported
by several popular NLP tool sets such as OpenNLP [14] and
Stanford NLP [31]. Build commands in readme files / Wiki
pages can also be viewed as a type of entities, and in a previous
work [22], we proposed a technique to extract build commands
from readme files and Wiki pages, and constructed a training
set of readme files / Wiki pages with labeled build commands
from 857 of top 1,500 GitHub Java projects which contains
such build commands in readme files / Wiki pages. In our
study, we apply this technique to the studied 200 projects. Note
that, to avoid bias, we excluded all the studied 200 projects
from the original training set.

The result of applying NER is presented in Table III.
The table shows that we are able to automatically build 5
projects whose correct build command is in readme files
/ Wiki pages, which is half of the projects having correct
build command available. Example 11 shows an example of
resolved build failure and the readme files containing the
correct build command. Our NER based command extraction

TABLE II
ROOT CAUSE REVEALED

Category All Ver. Depend. Ex. Require Non-Default Version Comp. Hard Coded Incomp.
Issue Removal Tools File Setup Command Conflict Error Path Upload

Readme 12 1 0 1 0 10 0 0 0 0
Build Log 27 1 5 1 11 1 4 2 1 1
Either 39 2 5 2 11 11 4 2 1 1
All 91 19 10 2 13 33 9 3 1 1

tool can extract proper command “mvn clean install” and build
the project successfully.

For the projects whose correct build commands are not in
the readme file / Wiki pages, we found that most of them
use a non-default target but do not need additional options.
For Ant, Maven and Gradle if we executed command “ant”,
“mvn” and “gradle –tasks” respectively, we can obtain the list
of all available build targets in the project. But we still need
to choose the correct target to use if we do not want to try
them exhaustively. Based on our large training set from 857
projects with manually labeled build commands, we are able
to find which target is more like the correct building target by
calculating the similarity between the target name and all the
extracted commands in our training set under the same build
tool. Note that this technique is very simple and just taking
into consideration the target name, but with the top target we
fetch, we are able to successfully build 21 of 24 projects that
fails due to using non-default target and not solved with NER.
The detailed result is also shown in Table III.

BuildLogExample 11 Failure resolved with NER (apache/storm:
3a5ecf5)

Readme File:
The following commands must be run from the

top-level directory.
mvn clean install
If you wish to skip the unit tests you can do

this by adding -DskipTests to the command
line.

===

Build Log:
[ERROR] Failed to parse plugin descriptor for

org.apache.storm:storm-maven-plugins
:2.0.0-SNAPSHOT (~/storm-buildtools/storm-
maven-plugins/target/classes): No plugin
descriptor found at META-INF/maven/plugin.
xml -> [Help 1]

Example 12 shows an example of build failure resolved with
target estimation. In the list of available non-default targets,
we selected “assembleDebug” which has highest ranking. It
builds the project successfully because it does not look for
API Key, which is required by “build” target and fails the
build.

B. Version Reverting

Executing build command with parameter estimation in
many cases failed due to incompatible SDK and build tools(e.g

BuildLogExample 12 Failure resolved with Estimation (Han-
nahMitt/HomeMirror: 71c860)

ERROR - Crashlytics Developer Tools error.
java.lang.IllegalArgumentException:

Crashlytics found an invalid API key: null
.

Check the Crashlytics plugin to make sure that
the application has been added

successfully!
Contact support@fabric.io for assistance.
at com.crashlytics.tools.android.

DeveloperTools.processApiKey(
DeveloperTools.java:375)

Maven, Gradle) versions. To handle such issues, a straightfor-
ward way is to revert the versions of SDK and build tools.
To study the cost of doing so, we implemented a tool to
automatically perform the version reverting, and try to find out
how many versions we need to try before finding the correct
version. Table IV presents the result of this study, in which
rows 2-5 shows the number of projects whose build failures
are resolved within a certain type of version reverting, and
rows 6-7 shows the average and maximal reverted versions for
resolving build failures. The result shows that all 19 failures
can be resolved within 10 version reverting, and the average
reverting required is 3.8.

However, since it is not always easy to find out which build
tool or SDK has version issues, so the automatic building tool
may need to try them one by one, and a sum of Java, Maven,
and Android trials will bring the worst case to 15 trials.

C. Dummy File Generation

For build failures in the category of Require-Data-Setup, it
is easy to find their root cause (typically shown in the build
failure log). Therefore, we can always try to generate a dummy
local file as a place holder. Also, in many projects, a sample
local file (e.g., local.property.example) is provided, and users
can refer to it for what to be put into the local file. In our
study, we find that, simply generating an empty local file will
resolve 7 of the 13 build failures, and renaming the sample
local file (the file whose name is closest to the required file)
back will resolve 1 additional build failures.

D. Other Types of Failures

The other types of failures may not have general and
straightforward resolution. Removed Dependency and Config
Version Conflict are two other large sub-categories with 19
build failures in total. Removed Dependency failures can be

TABLE III
RESOLVED BUILD FAILURES WITH COMMAND EXTRACTION AND

PREDICTION

Build Tool Maven Gradle Ant All
/ Sub-Type Target Para
NER 2 3 0 5 4 1
Target 5 15 1 21 21 0
Estimation
All fixed 7 18 1 26 25 1
Not fixed 5 1 1 7 3 4

TABLE IV
RESOLVED BUILD FAILURES WITH VERSION REVERTING

Platform Java Maven Gradle Android All
Revert 1 version 9 0 0 0 9
Revert 2-5 versions 0 0 1 2 3
Revert 6-10 versions 0 6 1 0 7
Revert 11+ versions 0 0 0 0 0
Max # reverted versions 1 10 9 4 10
Avg # reverted versions 1 7.3 6.5 3 3.8

easily resolved if the dependency file can be found in large Jar
repositories (e.g., Maven Central, Java2S) or Google, but the
difficulty varies for each Jar. A potential solution is to search
for references to the Jar file in other projects’ configuration
files, and try to fetch the Jar file from their project folder or
referred server.

A large portion of Config Version Conflict failures (7 of
9) are due to out-of-date Gradle wrappers. These failures are
easy to find and resolve, because we just need to update the
version specified in gradle wrapper to the same as the gradle
script. However, the other 2 failures are due to mismatches
between parent and child pom files in maven. To resolve them,
we need to perform in-depth analysis of pom files and their
dependencies.

VII. DISCUSSIONS

A. Threats to Validity

The major threat to the internal validity of our evaluation is
the correctness of manual process in our experiment, including
the implementation of our approach, the labeling of build
commands, and the manual build process. To reduce this
threat, we carefully performed all these process, and double
checked the consistency throughout the data sets. The major
threat to the external validity of our evaluation is that our
findings may be only applied to our subject data set. To reduce
this threat, we used a large number of top Java projects for
evaluating project building. Our experiment confirms that these
projects cover various build configuration systems.

B. Lessons Learned for Automatic Software Building

It is a necessity. Our study finds that, about half of the top Java
projects cannot be straightforwardly built with default build
commands. This is a very disconcerting fact: consider having
to create a data set of 200 built Java projects (not very large
for mining or training purposes), while a large number can
be automatically built with simple default build commands, a
researcher still needs to manually build 100 projects.

Furthermore, referring to our experiment on top 200 projects
again, among the 86 projects that have build failures, 59 do not

contain sufficient documentations (e.g., in readme files) that
describe the correct building instructions or common building
pitfalls. A developer wanting to build such projects have little
choice but to engage in a “trial by error” attempt to manually
iterate through known build targets. This is obviously a time
consuming process and in no way a scalable process, if done
manually. It is a clear challenge that has to be addressed if
software engineering researchers aspire to develop large-scale
program analysis techniques that require massively large sets
of build artifacts. Perhaps one can consider simply to rely
on a best effort automated use of default build commands to
build half of the projects in a large corpus. This naive solution
however, might introduce unknown bias into downstream
research processes. In essence, this ’build’ problem is not
simply just a matter of productivity, but likely a hurdle of
the software engineering research methodologies.
It is feasible. Our study shows that, among the 86 projects
with build failures, 26 projects can be built successfully with
relatively simple heuristics. For instance, reverting platform to
all possible versions, and generating a dummy property file.
Furthermore, 26 additional projects can be built successfully
by the NER technique and mining commands from a large set
of readme files. The 7 projects with unmatched gradle wrap-
pers and missing dependency Jar files also have the potential to
be automatically built by fixing the mismatches between gradle
wrapper and gradle scripts, and searching and downloading
the missing Jar files from other servers (e.g., Java2S [7]).
These numbers show that, more than 75% of the projects with
build failures can be automatically resolved with simple rules
or some advanced techniques, so a tool combining default
command execution and the resolution techniques above may
achieve an overall build successful rate of 80%. A tool that
systematically binds together these heuristics to fix build
scripts and strategies to iteratively try build alternatives, would
not only reduce the manually effort of software engineering
researchers, as well as enlarge the amount of build data that
they can extract from open repositories.
The challenges. Our study has also identified several build-
failure categories whose automatic resolution can be difficult.
For instance, when the building process requires external tools,
when a dummy local property file cannot enable successful
build, or when complicated build commands are required but
no instructions are available in the readme files / Wiki pages.
To handle these cases, a tool needs to automatically analyze
the project files structures, build configuration files, and also
mine and analyze discussion threads from online forums such
as StackOverflow [10]. These research tasks not only can be
challenging but also of great value. Note that bringing the
overall build successful rate from 80% to 90% will reduce
half of the manual build effort required by researchers.

Another challenge for automatic building tools is the time
and resource consumption of building each project. A success-
ful build is possibly preceded by a large number of unsuccess-
ful attempts. For example, the building tool may try a lot
of build-tool versions to find the version that is compatible
with the project. Although the build process is automated,

considering the large number of projects in open repositories,
the performance can still be a major concern. Hence, it is
very important that the techniques that we use must be easily
scalable (i.e., large volumes of input can be handled by adding
more compute strength to the cluster). Also these techniques
must be highly optimized, for instance, in the manner they
extract/use information from build failure logs and possibly
learn from previous attempts (e.g., recognize and prune away
known hopeless attempts).

C. Lessons Learned for Build-Tool Developers

Our study has shown that the backward incompatibility of
build tools is one of the leading root causes of build failures.
As time goes by, a project will no longer be buildable with the
newest version of built tools. While backward incompatibility
is often unavoidable, build tool developers should maintain
and make available all previous versions of the tool, and force
the build configuration file to specify the version that the
project is built on. In fact, Gradle Wrapper [5] is a built-in
mechanism in Gradle that automatically downloads and uses
the proper gradle version. Interestingly, we found out-of-date
gradle wrapper files in 7 projects, and the presence of such
fault in a project often fatally derails the building process.
We believe that these consistencies between the wrapper and
the build script should be enforced by the build tool itself.
Furthermore, a lot of projects are using non-default build
commands and parameters without having any instructions
in their readme files. An excellent feature that build tool
developers should consider supporting is one that records the
developers’ command sequences when they build the software
and automatically generate some wrapping scripts that repeats
their build actions.

D. Lessons Learned for Project Developers

The Version Conflicts in Configuration Files build failure
category contains 9 build failures that are caused by defects
in the software project itself. The 3 code compilation errors are
due to incomplete commits (the code revision we downloaded
is in the middle of a global change and thus cannot be built).
The rest build failures are all caused by defects that prevent
the software to be built on another machine, such as hard-
coded paths, miss-uploaded files, and out-of-date version in
wrapper files or configuration files. This calls for a testing of
the project on a different machine when a change is made
to configuration files / wrapper files or build dependencies.
In fact, this can be forced by some code reviewing tools like
Gerrit [1]. And the automatic software building tools can also
serve as a testing tool to report build-related defects (such as
out-of-date gradle wrappers) to project developers.

E. YML Files and Continuous Integration

For Continuous Integration (CI) [23], some projects adopt
Travis CI and include a yml file in the project repository to
specify build steps for CI process. In our study, we find 95 of
the top 200 projects to include such yml files. Using yml files
to build the project requires specific integration configurations

and software support from Travis CI, so in our study we do
not use yml files for automatic building.

VIII. RELATED WORKS

Study on Build Failures. On the study of building errors,
Hyunmin et al. [35] carried out an empirical study to cate-
gorize build errors at Google. Their study shows that missing
types and incompatibility are the most common type of build
errors, which are consistent with our findings. However, they
also find many semantic or syntactic errors, which are very rare
in our study. This is not surprising, since their study focused on
the build errors in the original environments, while our study
focuses on the build errors due to environment changes. Also,
since our projects are committed versions in the repository,
with support of current IDEs, they are more likely to be
built successfully in original environment, and have fewer
code related errors. Recently, Tufano et al. [41] studied the
frequency of broken (not compilable) snapshots and likely
causes of broken snapshots. Sulír et al. [37] performed build
failure analysis based on build log text categorization to
find out frequency and reasons for build errors. McIntosh et
al. [32]’s study also supports that for modern build systems
build maintenance effort on external dependency is higher than
than internal dependency management. Compared to these
works which analyze only build logs, we performed detailed
manual analysis and building to find out and confirm the
root causes of the build failures. As an example, dependency
issues are found to be a major reason of build failures by
previous works, but we found that such dependency issues
may be caused by build-plug-in version errors or a wrong
build command used. So simply adding the dependency back
to the project may not resolve the build failure.
Automatic Software Building. Lämmel et al. performed
semi-automatic building of Ant-based Java projects (i.e., the
QUAATLAS corpus [19]) in their API statistics study [26]
. The thesis version [36] of the work details the software
building process, which includes automatic scripts to locate
Ant configuration files and to run the Ant command. However,
the work uses only predefined Ant commands sets, and does
not take advantage of information in readme files, so it is
similar to our baseline approach but specific for Ant. On
migration of build configuration files, AutoConf [2] is a GNU
software that automatically generates configuration scripts
based on detected features of a computer system. AutoConf
detects existing features (e.g., libraries, software installed) in
a build environment, and configure the software based on pre-
defined options. Most recently, Gligoric et al. [20] proposed
an approach to automate the migration of various building
configuration files to CloudMake configuration files based on
building execution with system-level instrumentation.
Analysis of Building Configuration Files. Analysis of build
configuration file is growing as an important aspect for soft-
ware engineering research such as dependency analysis for
path expression, migration of build configuration file and
empirical studies. On dependency analysis, Aoumeur [13]
proposed a Petri-net based model to describe the dependencies

in build configuration files. Adams et al. [11] proposed a
framework to extract a dependency graph for build configu-
ration files, and provide automatic tools to keep consistency
during revision. Most recently, Al-Kofahi et al. [12] proposed
a fault localization approach for make files, and SYMake [38]
uses a symbolic-evaluation-based technique to generate a
string dependency graph for the string variables/constants in
a Makefile , automatically traces these values in maintenance
tasks (e.g., renaming), and detect common errors.

IX. CONCLUSIONS

Software building takes significant amount of time for
software engineering researchers before analyzing projects.
Developers may also need to build a list of third party tools
before they can use them. This paper comes up with the first
study on the build failures found in top Java projects, and
whether such failures can be resolved with automatic tools.
We have constructed a taxonomy for the root causes of build
failures, and study the distribution of build failures in different
categories. Specifically, we found 91 build failures in 86 of
the 187 Java projects that use Maven, Ant, and Gradle for
their building process, and we found the leading root causes
of build failures are backward-incompatibility of JDK and
building tools, non-default parameters in build commands, and
project defects in code / configuration files. Finally, 52 of the
build failures can be resolved automatically, and additional 6
build failures have the potential to be resolved automatically.

Acknowledgments This material is based on research spon-
sored by NSF Award CCF-1464425 and DARPA grant under
agreement number FA8750-14-2-0263.

REFERENCES

[1] Gerrit code review - a quick introduction. https://review.openstack.org/
Documentation/intro-quick.html/, accessed: 2016-10-20

[2] Gnu autoconf - creating automatic configuration scripts. http://www.gnu.
org/software/autoconf/manual/index.html, accessed: 2015-10-25

[3] Google code âĂŤ project hosting. https://code.google.com/hosting,
accessed: 2009-08-06

[4] Gradle task type. https://docs.gradle.org/3.3/dsl/index.html#N1000C/,
accessed: 2017-07-04

[5] The gradle wrapper. https://docs.gradle.org/current/userguide/gradle_
wrapper.html/, accessed: 2016-10-20

[6] Ibm. the t. j. watson libraries for analysis (wala). http://wala.sourceforge.
net, accessed: 2012-03-20

[7] Java2s jar archive. http://www.java2s.com/Code/Jar/CatalogJar.htm,
accessed: 2016-09-20

[8] Readme. https://en.wikipedia.org/wiki/README, accessed: 2016-09-20
[9] The sourceforge story. http://web.archive.org/web/20110716044546/http:

//itmanagement.earthweb.com/cnews/article.php/3705731, accessed:
2012-04-12

[10] Stackoverflow. http://stackoverflow.com/, accessed: 2016-09-25
[11] Adams, B., Tromp, H., De Schutter, K., De Meuter, W.: Design recovery

and maintenance of build systems. In: ICSM. pp. 114–123 (2007)
[12] Al-Kofahi, J., Nguyen, H.V., Nguyen, T.N.: Fault localization for build

code errors in makefiles. In: ICSE Companion. pp. 600–601 (2014)
[13] Aoumeur, N., Saake, G.: Dynamically evolving concurrent information

systems specification and validation: A component-based petri nets
proposal. Data Knowl. Eng. 50(2), 117–173 (Aug 2004)

[14] Apache: Opennlp (2010), http://opennlp.apache.org
[15] Balasuriya, D., Ringland, N., Nothman, J., Murphy, T., Curran, J.R.:

Named entity recognition in wikipedia. In: Proceedings of the 2009
Workshop on The People’s Web Meets NLP: Collaboratively Con-
structed Semantic Resources. pp. 10–18. Association for Computational
Linguistics (2009)

[16] Beller, M., Gousios, G., Zaidman, A.: Travistorrent: Synthesizing travis
ci and github for full-stack research on continuous integration. In: MSR.
pp. 447–450. IEEE Press, Piscataway, NJ, USA (2017), https://doi.org/
10.1109/MSR.2017.24

[17] Charles, P.: Project title. https://github.com/charlespwd/project-title
(2013)

[18] Dagenais, B., Hendren, L.: Enabling static analysis for partial java
programs. In: OOPSLA. pp. 313–328 (2008)

[19] De Roover, C., Lammel, R., Pek, E.: Multi-dimensional exploration of
api usage. In: ICPC. pp. 152–161 (2013)

[20] Gligoric, M., Schulte, W., Prasad, C., Van Velzen, D., Narasamdya,
I., Livshits, B.: Automated migration of build scripts using dynamic
analysis and search-based refactoring. In: ACM SIGPLAN Notices.
vol. 49, pp. 599–616. ACM (2014)

[21] Hassan, A.E.: The road ahead for mining software repositories. In:
FoSM. pp. 48–57. IEEE (2008)

[22] Hassan, F., Wang, X.: Mining readme files to support automatic building
of java projects in software repositories: Poster. In: ICSE Companion.
pp. 277–279 (2017)

[23] Hilton, M., Tunnell, T., Huang, K., Marinov, D., Dig, D.: Usage, costs,
and benefits of continuous integration in open-source projects. In: ASE.
pp. 426–437. ASE 2016, ACM, New York, NY, USA (2016), http://doi.
acm.org/10.1145/2970276.2970358

[24] Ikkink, H.K.: Gradle Dependency Management. Packt Publishing (2015)
[25] Lam, P., Bodden, E., Hendren, L., Darmstadt, T.U.: The soot framework

for java program analysis: a retrospective
[26] Lämmel, R., Pek, E., Starek, J.: Large-scale, AST-based API-usage

analysis of open-source Java projects. In: SAC. pp. 1317–1324 (2011)
[27] Lattner, C., Adve, V.: Llvm: A compilation framework for lifelong

program analysis & transformation. In: CGO. pp. 75– (2004)
[28] Lhoták, O., Hendren, L.: Scaling java points-to analysis using spark. In:

CC. pp. 153–169. Springer (2003)
[29] Li, D., Lyu, Y., Wan, M., Halfond, W.G.: String analysis for java and

android applications. In: ESEC/FSE. pp. 661–672. ACM (2015)
[30] Livshits, B., Whaley, J., Lam, M.S.: Reflection analysis for java. In:

PLAS. pp. 139–160 (2005)
[31] Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J.,

McClosky, D.: The Stanford CoreNLP natural language processing
toolkit. In: ACL. pp. 55–60 (2014), http://www.aclweb.org/anthology/
P/P14/P14-5010

[32] Mcintosh, S., Nagappan, M., Adams, B., Mockus, A., Hassan, A.E.: A
large-scale empirical study of the relationship between build technology
and build maintenance. Empirical Softw. Engg. 20(6), 1587–1633 (Dec
2015), http://dx.doi.org/10.1007/s10664-014-9324-x

[33] Miller, F.P., Vandome, A.F., McBrewster, J.: Apache Maven. Alpha Press
(2010)

[34] Mostafa, S., Wang, X.: An empirical study on the usage of mocking
frameworks in software testing. In: QSIC. pp. 127–132. IEEE (2014)

[35] Seo, H., Sadowski, C., Elbaum, S., Aftandilian, E., Bowdidge, R.:
Programmers’ build errors: A case study (at Google). In: ICSE. pp.
724–734 (2014)

[36] Starek, J.: A large-scale analysis of Java API usage (2010)
[37] Sulír, M., Porubän, J.: A quantitative study of java software buildability.

In: PLATEAU. pp. 17–25. ACM, New York, NY, USA (2016), http:
//doi.acm.org/10.1145/3001878.3001882

[38] Tamrawi, A., Nguyen, H.A., Nguyen, H.V., Nguyen, T.N.: Symake: A
build code analysis and refactoring tool for makefiles. In: ASE. pp. 366–
369 (2012)

[39] Tang, H., Wang, X., Zhang, L., Xie, B., Zhang, L., Mei, H.: Summary-
based context-sensitive data-dependence analysis in presence of call-
backs. In: POPL. pp. 83–95 (2015)

[40] Tilly, J., Burke, E.M.: Ant: The Definitive Guide. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 1st edn. (2002)

[41] Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia,
A., Poshyvanyk, D.: There and back again: Can you compile that
snapshot? Journal of Software: Evolution and Process 29(4) (2017)

[42] Wang, X., Zhang, L., Tanofsky, P.: Experience report: How is dynamic
symbolic execution different from manual testing? a study on klee. In:
ISSTA. pp. 199–210. ACM (2015)

[43] Zhang, H., Kuan Tan, H.B., Zhang, L., Lin, X., Wang, X., Zhang,
C., Mei, H.: Checking enforcement of integrity constraints in database
applications based on code patterns. JSS (2011)

