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ABSTRACT
Advancements in software build tools such as Maven reduce build
management effort, but developers still need specialized knowledge
and long time to maintain build scripts and resolve build failures.
More recent build tools such as Gradle give developers greater extent
of customization flexibility, but can be even more difficult to main-
tain. According to the TravisTorrent dataset of open-source software
continuous integration, 22% of code commits include changes in
build script files to maintain build scripts or to resolve build failu-
res. Automated program repair techniques have great potential to
reduce cost of resolving software failures, but the existing techniques
mostly focus on repairing source code so that they cannot directly
help resolving software build failures. To address this limitation,
we propose HireBuild: History-Driven Repair of Build Scripts, the
first approach to automatic patch generation for build scripts, using
fix patterns automatically generated from existing build script fixes
and recommending fix patterns based on build log similarity. From
TravisTorrent dataset, we extracted 175 build failures and their cor-
responding fixes which revise Gradle build scripts. Among these
175 build failures, we used the 135 earlier build fixes for automatic
fix-pattern generation and the more recent 40 build failures (fixes)
for evaluation of our approach. Our experiment shows that our ap-
proach can fix 11 of 24 reproducible build failures, or 45% of the
reproducible build failures, within comparable time of manual fixes.
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1 INTRODUCTION
Most well maintained software projects use build tools, such as
Ant [44], Maven [29] and Gradle [18] to automate the software
building and testing process. Using these tools, developers can des-
cribe the build process of their projects with build scripts such as
build.xml for Ant, pom.xml for Maven, and build.gradle for
Gradle. With growing software size and functionality, build scripts
can be complicated [25] and may need frequent maintenance [16].
As software evolves, developers make changes to their code, test
cases, system configuration, and dependencies, which may all lead to
necessary changes in the build script. Adams et al. [4] found strong
co-evolutionary relationship between source code and build script in
their study. Since build scripts need to be synchronized with source
code and the whole build environment, neglecting such changes in
build scripts often leads to build failures.

According to our statistics on TravisTorrent [9] dataset on the
continuous integration of open-source software projects, 29% of
code commits fail to go through a successful build on the integra-
tion server. Seo et al. [35] also mentioned a similar build failure
proportion at Google, which is 37%. These build failures hinders a
project’s development process so that they need to be fixed as soon
as possible. However, many developers do not have the required
expertise to repair build scripts [34]. Therefore, automatic repair
of build scripts can be desirable for software project managers and
developers.

Automatic generation of software patches is an emerging techni-
que, and has been addressed by multiple previous research efforts.
For example, GenProg [14] and PAR [20] achieve promising result
for automatic bug fixing. But these works are designed for repai-
ring source code written in different programming languages. In
contrast, repairing build scripts has its unique challenges. First, alt-
hough the code similarity assumption (both GenProg and PAR are
taking advantage of this assumption to fetch patch candidates from
other portion of the project or other projects) still holds for build
scripts, build-script repair often involves open knowledge that do not
exist in the current project, such as a newly available version of a
dependency or a build-tool plug-in (See Example 1). Second, unlike
source code bugs, build failures does not have a test suite to facilitate
fault localization [31] and to serve as the fitness function [12]. Third,
while different programming languages share similar semantics (so
that code patterns / templates can be adapted and reused), the seman-
tics of build scripts are very different from normal programs, so we
need to re-develop abstract fix templates for build scripts.

On the other hand, there are also special opportunities we can
take advantage of in the repair of build scripts. First, build failures
often provide richer log information than normal test failures, and
the build failure log can often be used to determine the reason and
location of a build failure. Second, build scripts are programs in a
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Example 1 Gradle Version Dependency Change (puniverse/quasar: 2a45c6f)

task wrapper(type: Wrapper) {

- gradleVersion = ’1.11’

+ gradleVersion = ’2.0’

}

specific domain, so it is possible to develop more specific build-fix
templates (e.g., involving more domain-specific concepts such as
versions, dependencies instead of general concepts like parameters,
variables). Third, many build failures are related to the build tools
and environments. These failures are not project-specific and may
be recursive [39, 51] in different projects, so fix patterns can often
be used beyond a project’s boundary.

In this paper, we propose a novel approach, HireBuild, to generate
patches for build scripts. Our insight is that, since many software
projects use the same build tool (e.g., Gradle), similar build failures
will result in similar build logs. Therefore, given a build failure, it
is possible to use its build-failure log to locate similar build failures
from a historical build-fix dataset, and adapt historical fixes for these
new failures. Specifically, our technique consists of the following
three phases. First, for a given build failure, based on build log simi-
larity, we acquire a number of historically fixed build failures that
have the most similar build logs. We refer to these build fixes as seed
fixes. Second, from build-script diffs of the seed fixes, we extract a
number of fix patterns based on our predefined fix-pattern templates
for build scripts, and rank the patterns by their commonality among
seed fixes. To generate build-script diffs, our approach uses an exis-
ting tool GumTree [11] which extracts changes of Java source code,
XML, JavaScript code change. Third, we combine the patterns with
information extracted from the build scripts and logs of the build
failure to generate a ranked list of patches, which are applied to the
build script until the build is successful.

Although following the general generation-validation process
for program repair, our technique is featured with following major
differences to address the challenges and take advantage of the
opportunities in build-script repair.

• Build log analysis. Build logs contain a lot of information
about the location and reason of build failures, and someti-
mes even provide solutions. Our build log analysis parses
build logs and extracts information relevant to build failures.
Furthermore, HireBuild measures the similarity of build logs
based on extracted information.

• Build-fix-pattern templates. There are a number of common
domain-specific operations in build scripts, such as including
/ excluding a dependency, updating version numbers, etc.
In HireBuild, we developed build-fix-pattern templates to
involve these common operations specific to software build
process.

• Build validation. In build-script repair, without test cases,
we need a new measurement to validate generated patches.
Specifically, we use the successful notification in the build
log and the numbers of compiled source files to measure build
successfulness.

In our work, we focus on repair of build scripts, so we do not
consider compilation errors or unit-testing failures (although they

also cause build failures) as they can be easily identified based on
build logs and may be automatically repaired with existing bug repair
techniques. Furthermore, we use Gradle (based on Groovy) as our
targeted build tool as it is the most promising Java build tools now,
and recent statistics [40] show that more than 50% of top GitHub
apps have already switched to Gradle.

In our evaluation, we extracted 175 reproducible build fixes with
corresponding build logs and build script changes from Travistorrent
dataset [9] on February 8, 2017, the build fixes are from 54 different
projects). To evaluate HireBuild, we use the earlier 135 build fixes
as our training set, and 40 later actual build failures (chronologically
135 earlier and 40 later bug fixes among the 175 regardless of which
project they belong to) as our evaluations set. Among these 40 build
failures, we reproduced 24 build failures in our test environment.
Empirical evaluation results show that our approach is able to ge-
nerate a fix for 11 of the 24 reproduced build script failures which
gives same build output as developers’ original fix. Overall, our work
presented in the paper makes the following contributions.

• A novel approach and tool to automatic patch generation for
build scripts to resolve software build failures.

• A dataset of 175 build fixes which can serve as the basis and
a benchmark for future research.

• An empirical evaluation of our approach on real-world build
fixes.

• An Abstract-Syntax-Tree (AST) diff generation tool for Gradle
build scripts, which potentially have more applications.

The remaining part of this paper is organized as follows. After
presenting a motivation example of how build-script repair is diffe-
rent from source-code repair in Section 2, we describe the design
details of HireBuild in Section 3. Section 4 presents the evaluation
of our approach, while Section 5 presents discussion of important
issues. Related works and Conclusion will be discussed in Section 6
and Section 7, respectively.

2 MOTIVATING EXAMPLE
In this section, we introduce a real example from our dataset to
illustrate how patch generation of build scripts is different from
patch generation of source code. Example 2 shows a build failure
and its corresponding patch where the upper part shows the most
relevant snippet in the build-failure log and the lower part shows
the code change to resolve the build failure. The project name and
commit id are presented after the example title.

In this build failure, the build-failure log complains that there
are two conflicting versions of slf4j module, and the bug fix is
to add an exclusion of the module in the compilation of Galaxy
component. Although this build fix is just a one-line simple fix, it
illustrates differences between source-code repair and build-script
repair in the following aspects.

First, it is possible to find from existing scripts or past fixes that we
need to perform an exclude operation, however, since org.slf4j
never appears in the script (it is transitively referred and will be
downloaded from Gradle central dependency repository at runtime),
the string “org.slf4j” can be hard to generate, and enumerating all
possible strings is not a feasible solution. The string can actually be
generated by comparing the build-failure log and available modules
in Gradle central dependency repository, but this is very different
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Example 2 A Gradle Build Failure and Patch (puniverse/quasar: Build Failure
Version:017fa18, Build Fix Version:509cd40)

Could not resolve all dependencies for

configuration ':quasar-galaxy:compile'.

> A conflict was found between the following

modules:

- org.slf4j:slf4j-api:1.7.10

- org.slf4j:slf4j-api:1.7.7

________________________________________________

compile ("co.paralleluniverse:galaxy:1.4") {

...

exclude group: 'com.google.guava', module: '

guava'

+ exclude group: “org.slf4j”, module: ’*’

}

from source-code patching where all variable names to be referred
to are already defined in the code (in the case when a generated fix
contains a newly declared variable, the variable can have any name
as long as it does not conflict with existing names in the scope).

Second, in build-script repair, we are able to, and need to consider
build-specific operations. For example, we should not simply deem
exclude as an arbitrary method name, but needs to involve its
semantics into fix-pattern templates, so that we know a module
name will follow the exclude command.

Third, the build log information is very important in that it not
only provides the name of conflicting dependency, but also provides
the compilation task performed when build failure happens, which
can largely help patch generation tool to locate the build failure and
determine where to apply the patch.

3 APPROACH
The overall goal of HireBuild is to generate build-script patches
that can be used to resolve build failures. HireBuild achieves these
goals with three steps: (1) log similarity calculation to find similar
historical build fixes as seed fixes, (2) extraction of build-fix patterns
from seed fixes, and (3) generation and validation of concrete patches
for build scripts. In the following subsections, we first introduce
preliminary knowledge on Gradle, and then describe the three steps
of HireBuild with more details in the following subsections.

3.1 Gradle Build Tool
Gradle is a general purpose build management system based on
Groovy and Kotlin [2]. Gradle supports the automatic download and
configuration of dependencies or other libraries. It supports Maven
and Ivy repositories for retrieving these dependencies. This allows
reusing the artifacts of existing build systems.

A Gradle build may consist of one or more build projects. A
build project corresponds to the building of the whole software
project or a submodule. Each build project consists of a number of
tasks. A task represents a piece of work during the building process
of the build project, e.g., compile the source code or generate the
Javadoc. A project using Gradle describes its build process in the
build.gradle file. This file is typically located in the root folder
of the project. In this file, a developer can use a combination of

declarative and imperative statements in Groovy or Kotlin code.
This build file defines a project and its tasks, and tasks can also be
created and extended dynamically at runtime. Gradle is a general
purpose build system hence this build file can perform any task.

3.2 Log Similarity Calculation to Find Similar
Fixes

One of the most important characteristic of build script repair is that,
a lot of software projects use the same build tools (e.g., Gradle),
so that build-failure logs of different projects and versions often
share the same format and output similar error messages for similar
build errors. So given a new build failure, HireBuild measures the
similarity between its build-failure log and the build-failure logs
of historical build failures to find its most similar build failures in
history dataset.

3.2.1 Build Log Parsing. Gradle build logs typically contain
thousands of lines of text. Gradle prints these lines when performing
different tasks such as downloading dependencies, compiling source
files, and when facing errors during the build. Our point of interest
is the error-and-exception part, which typically accounts for only
a small portion of the build log. So if we use the whole build log
to calculate similarity, the remaining part will bring a lot of noises
to the calculation (e.g., build logs from projects that have similar
dependencies may be considered similar).

Therefore, we use only the error-and-exception part of the build
log to calculate similarity between build logs. An example of the
error-and-exception part in Gradle build log is presented as below.

* What went wrong:

A problem occurred evaluating project ':android-

rest'.

>

Gradle version 1.9 is required. Current version is

1.8. If using the gradle wrapper, try editing

the distributionUrl in /home/travis/build/47

deg/appsly-android-rest/gradle/wrapper/gradle-

wrapper.properties to gradle-1.9-all.zip

To extract the error-and-exception part, HireBuild extracts the
portion of the build log after the error indicating header in Gradle
(e.g., “* What went wrong”). HireBuild extracts only the last error,
as the earlier ones are likely to be errors that are tolerated and are
thus not likely to be the reason for the build failure. Furthermore,
when there are exception stack traces in the error-and-exception
part, HireBuild removes the stack traces for two reasons. First, stack
traces are often very long, so they may dominate the main error
message and bring noise (as mentioned above). Second, stack traces
are often different from project to project so they cannot catch the
commonality between build failures.

3.2.2 Text Processing. After we extracted the error-and-exception
part from the build-failure log, we perform the following processing
to convert the log text to standard word vector.

• Text Normalization breaks plain text into separate to-
kens and splits camel case words to multiple words.
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• Stop word Removal removes common stop words, punc-
tuation marks etc. For better similarity, HireBuild also remo-
ves common words for building process including “build”,
“failure”, and “error”.

• Stemming is the process of reducing inflected words to
their root word. As an example, the word “goes” derived
from word “go”. The stemming process converts “goes” to
its root word “go”. For stemming we applied popular Porter
stemming algorithm [47].

3.2.3 Similarity Calculation. With the generated word vec-
tor from the error-and-exception part of the build-failure logs, we
use the standard Term Frequency–Inverse Document Frequency
(TF–IDF) [33] formula to weight all the words. Finally, we calculate
cosine similarity between the log of build failure to be resolved and
all build-failure logs of historical build fixes in our training set, and
fetch the most similar historical fixes. HireBuild uses the five most
similar historical fixes as seed fixes to generate build-fix patterns.

3.3 Generation of Build-Fix Patterns
To generate build-fix patterns, for each seed fix, HireBuild first cal-
culates the code difference between the versions before and after
the fix. The code difference consists of a list of elementary revi-
sions including insertions, deletions and updates. Then, for each
revision, HireBuild generalizes it to hierarchical pattern and merges
similar patterns. Finally, HireBuild flattens the hierarchical pattern
to generate a set of build-fix patterns, and ranks these patterns.

3.3.1 Build-Script Differencing. In this phase, for each seed
fix, we extract Gradle build script commits before and after fix, and
convert the script code to AST representation. Gradle build uses
Groovy [2]-based scripting language extended with domain-specific
features to describe software build process. With support of the
Groovy parser, AST representation of script code can be generated.

Our goal is to generate an abstract representation of code changes
between two commits. Having build script content represented as an
AST, we can apply tree difference algorithms, such as ChangeDis-
tiller [13] or GumTree [11], to extract AST changes with sufficient
abstraction. In particular, HireBuild uses GumTree to extract chan-
ges between two Gradle build scripts. GumTree generates a diff
between two ASTs with list of actions which can be insertion, de-
letion, update, and movement of individual AST nodes to transfer
from a source version to a destination version. However, GumTree
generates a list of AST revisions without node type information,
so we revise GumTree to include the information. Furthermore, Hi-
reBuild also records the ancestor AST nodes of the changed AST
subtree. Such ancestor AST nodes are typically the enclosing expres-
sion, statement, block, and task of the change, and they are helpful
for merging different seed fixes for more general patterns, and for
determining where the generated patches should be applied. As men-
tioned earlier, in Gradle scripts, a task is a piece of work which a
build performs, and a script block is a method call with parameters
as closure [3], so keeping such information helps to apply patches
to a certain block or task. Example 3 shows an exemplar output of
HireBuild’s build-script differencing module, in which the operation,
node type, and ancestor nodes are extracted. Note that HireBuild
extracts only one level of parent expression to avoid potential noises.

As shown in the example, the task/block name can be empty if the
fix is not in any tasks/blocks.

Example 3 Build Script Differencing Output (BuildCraft/BuildCraft: 98f7196)

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <patch>
3 <lineno id="30"><exp id="0">
4 <operation>Update</operation>
5 <nodetype>ConstantExpression</nodetype>
6 <nodeexp>1.7.2-10.12.1.1079</nodeexp>
7 <nodeparenttype>BinaryExpression</nodeparenttype>
8 <nodeparentexp>(version = 1.7.2-10.12.1.1079)
9 </nodeparentexp>

10 <nodeblockname>minecraft</nodeblockname>
11 <nodetaskname> </nodetaskname></exp>
12 </lineno>
13 </patch>

3.3.2 Hierarchical Build-Fix Patterns. In some rare cases
we can directly use the concrete build-fix pattern to generate a
correct patch. Example 4 provides such a patch from Project:

nohana/Laevatein:a2aaca4. There exists an exactly same build
fix in the training set (from a different project).

Example 4 Training Project Fix (journeyapps/zxing-android-embedded: 12cfa60)

+ lintOptions {

+ abortOnError false

+ }

However, in more common scenarios, code diffs generated from
seed fixes are too specific and cannot be directly applied as patches.
Consider Examples 5 and 6, changes made in different project are
similar, but if we consider concrete change of Example 5 as “Update
1.7.2-10.12.1.1079” then this change can hardly be applied to other
scripts. Therefore, we need to infer more general build-fix patterns
from them.

Example 5 Gradle Build Fix (BuildCraft/BuildCraft: 98f7196)

- version = “1.7.2-10.12.1.1079”

+ version = “1.7.2-10.12.2.1121”

Example 6 Gradle Build Fix (ForgeEssentials/ForgeEssentialsMain:fcbb468)

-version = “1.4.0-beta7”

+version = “1.4.0-beta8”

Specifically, HireBuild infers a hierarchy of build-fix patterns
from each seed fix by generalizing each element in the differencing
output of the seed fix. For example, the hierarchies generalized from
Examples 5 and 6 are shown in Figure 1. From the figure, we can
see that, HireBuild does not generalize operations and the node type
of expression that are involved in the fix (i.e., ConstantExpression),
because a change on those typically indicates a totally different fix.
HireBuild also does not include the task and block information in
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Figure 1: Hierarchies of Build-Fix Patterns
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Figure 2: Merged Hierarchies

the pattern as they are typically not a part of the fix. Given a hier-
archy, by choosing whether and which leaf node to be generalized,
we can generate patches at different abstract levels. For example,
if we generalize the parent expression from version=1.7.2...

to ParentExp: any, we generate a pattern that updates a value
1.7.2... without considering its parent. If we generalize both the
parent expression and the node expression, we generate a pattern
that update any constants in the script. Note that HireBuild does not
consider the cases where the node expression is generalized but the
parent expression is not, as such a pattern can never match real code.

3.3.3 Merging Build-Fix Patterns. After generating hierar-
chies of build-fix patterns, HireBuild first tries to merge similar
hierarchies. For example, the two hierarchies in Figure 1 will be
merged to a hierarchy shown in Figure 2. HireBuild merges only a
pair of hierarchies with the same operation and node type (Update
and Constant Expression in this case). During the merging process,
HireBuild merges hierarchies recursively from their root node, and
merges nodes with exactly the same value. If two nodes to be merged
have different constant values, HireBuild does not merge them and
their children nodes. If two nodes to be merged have different expres-
sion values, HireBuild extracts their corresponding AST tree, and
merges the AST tree so that the common part of the expressions can
be extracted. In Figure 2, since the expressions version=1.7.2...
and version=1.4.0... share the same child nodes version and
=, a node version=* is added. Note that more than two hierarchies
can be merged in the same way if they share the same operation and
node type.

3.3.4 Ranking of Build-Fix Patterns. After hierarchies are
merged, HireBuild calculates frequencies of build-fix patterns among
seed fixes. If a hierarchy cannot be merged with other hierarchies, all
the build-fix patterns in it have a frequency 1 among seed fixes, as
they are specific to the seed fix they are from. In a merged hierarchy,
the frequency of all its patterns is always the number of original
hierarchies being merged. After calculating the frequencies of all
build-fix patterns from hierarchies, HireBuild ranks build-fix patterns
according to the frequency. For each build-fix pattern α , we counted
ntα : α’s frequency among seed fixes. Then probability of α is as
follows.

Pα =
ntα
N

where N is the total occurrences of build-fix patterns. Then, we
rank the fix patterns based on the probability so that we use higher
ranked build-fix patterns first to generate concrete patches. When
there are ties between pattern A and B, if A is a generalization
of B (A is generated by generalizing one or more leaf nodes of
B), we rank B over A. The reason is that, when a build-fix pattern
is generalized, it can lead to a larger number of concrete patches
(e.g., update gradleVersion from any existing version to anot-
her existing version), so HireBuild needs to perform more build
trials to exhaust all possibilities. As an example, all build-fix pat-
terns from the hierarchy in Figure 2 have the same popularity, but
the most concrete pattern: update constant expression with

parent expression version= * will be ranked highest.
If there is no generalization relation between patterns, HireBuild

ranks higher the build-fix patterns from the seed fix with higher
ranking (the seed fix whose build failure log is more similar to that
of the build failure to be fixed).

3.4 Generation and Validation of Concrete
Patches

Before generation of concrete patches, we need to first decide which
.gradle file to apply the fix. HireBuild uses a simple heuristic,
which always choose the first .gradle file mentioned in the er-
ror part extracted from the build failure log. If no .gradle file is
mentioned, HireBuild uses the build.gradle file in the root folder.

Given a build-fix pattern, and the buggy Gradle build script as
input, to generate concrete patches, HireBuild first parses the buggy
Gradle build script to AST, and then HireBuild tries to find where a
patch should be applied.

For updates and deletions, HireBuild matches the build-fix pat-
terns to nodes in the AST. For example, the build-fix pattern update
constant expression with parent expression version

= * can be mapped to an AST node of type ConstantExpression
and its parent expression node has a value matching version=*.
When a build-fix pattern can be mapped to multiple AST nodes (very
common for general build-fix patterns), and HireBuild generates pa-
tches for all the mapped AST nodes. The only exception is when
a build-fix pattern is mapped to multiple AST nodes in one block.
In build scripts, within the same block, the sequence of commands
typically does not matter, so HireBuild retains only the first mapped
node in the block to reduce duplication.

For insertions, it is impossible to map a build-fix pattern to an
existing AST node, so HireBuild matches the block and task names
of the build-fix patterns to the buggy build script. When a build-fix
pattern is generated from a hierarchy merging multiple seed-fixes,
HireBuild considers the task and block names of all seed-fixes. If a
task or block name in the buggy script is matched, HireBuild inserts
the build patch at the end of the task or block.

After HireBuild determines which build-fix pattern to apply and
where to apply, we finally need to concentrate on the abstract parts of
the build-fix pattern and determine the values of the abstract nodes
(e.g., value of “*” in the pattern update constant expression

with parent expression version= *). The most commonly
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used values in build scripts are (1) identifiers including task names,
block names, variable names, etc.; (2) names of Gradle plug-ins
and third-party tools / libraries; (3) file paths within the project;
and (4) version numbers. HireBuild first determines which type
the value to added belongs to, based on the concrete values and
AST nodes in the seed fixes leading to the build-fix pattern to be
applied. HireBuild identifies version number and file paths based
on regression expression matching (e.g., HireBuild can determine
that 1.4.0-beta8 is a version number), and task / block / variable
names by scanning the AST containing the seed fix. Other types
of values including dependencies / plug-in names, and file paths
are all specific to certain AST nodes so that they can be easily
identified. Once the value type is determined, HireBuild generates
values differently for different types as follows.

• Identifiers: HireBuild considers identifiers in the concrete
seed fixes, as well as all available identifiers at the fix location.

• Names of plug-ins / libraries / tools: HireBuild considers
names appearing in the concrete seed fixes, in the build failure
log, and in the buggy build script.

• File paths: HireBuild considers paths appearing in the con-
crete seed fixes, in the build failure log, and in the buggy
build script.

• Version numbers: HireBuild first locates the possible tools /
libraries / plug-ins the version number is related to. This is
done by searching for all occurrences of the version variable
or constant in the AST of the buggy script. Once the tool /
library / plug-in is determined, HireBuild searches Gradle
central repository for all existing version numbers.

After the build-fix pattern, the location, and the concrete value
are determined, a concrete patch is generated and added to the list
of patches.

3.4.1 Ranking of Generated Patches. The previous steps
generate a large number of patch candidates, so ranking of them
is necessary to locate the actual fix as soon as possible. HireBuild
ranks concrete patches with the following heuristics. Basically, we
give higher priority to the patches which involve values or scopes
more similar to the buggy script and the build-failure log.

(1) Patches generated from higher ranked build-fix patterns are
ranked higher than those generated from lower ranked build-
fix patterns. The initial priority value of a patch is the proba-
bility value of its build-fix pattern.

(2) If a patch p is to be applied to a location L, and p is generated
from a build-fix pattern hierarchy merged from seed fixes A1,
..., Ai , ..., An . If L resides in a task / block whose name is the
same as the task / block name in any Ai , HireBuild adds p’s
priority value by 1.0.

(3) If a patch involves a value (any one of the four types des-
cribed in Section 3.4) which appears in the build-failure log.
HireBuild adds the priority value of the patch by 1.0.

(4) Rank all patches with updated priority values.

Note that, since the initial priority value is from 0 to 1, in the
heuristics, we always add the priority value by 1.0 when certain
condition meets, so that it go beyond all the other patches which
do not satisfy the condition, no matter how high the initial priority
value is.

3.4.2 Patch Application. After the ranked list of patches are
generated, HireBuild applies the patches one by one until a timeout
threshold is reached or the failure is fixed. HireBuild determines the
failure is fixed if (1) the build process returns 0 and the build log
shows build success, and (2) all source files that are compiled in the
latest successfully built version are compiled if they are not deleted
in between. We add the second criterion so that HireBuild can avoid
trivial incorrect fixes such as changing the task to be performed from
compile to clean up and to eliminate fake patches. HireBuild stops
applying patches after it reaches the first patch passing the patch
validation. Though there may be multiple valid patches, we apply
only the first one that passes the validation.

HireBuild generally focuses on one line fixes as most other soft-
ware repair tool does. But it also includes a technique to generate
multi-line patches if the failure is not fixed until all single line pat-
ches are applied. Multi-line patches can be viewed as a combination
of single line patches, but it is impossible to exhaust the whole com-
bination space. Example 7 shows a bug fix, which can be viewed as
the combination of three one-line patches (two deletions and one in-
sertion). To reduce the search space of patch combination, HireBuild
considers only the combination that occurs in original seed fixes.
Consider two one-line patches A and B, which are generated from
hierarchies HA and HB. HireBuild considers the combination (A, B)
only if HA and HB can be generalized from a same seed fix. After
the filtering, HireBuild ranks patch combinations by the priority sum
of the patches in the combination.

Example 7 Template with abstract node fix (passy/Android-
DirectoryChooser:27c194f)

dependencies {

...

- testCompile
files(’testlibs/robolectric-2.4-SNAPS
HOT-jar-with-dependencies.jar’)

- androidTestProvided
files(’testlibs/robolectric-2.4-SNAPS
HOT-jar-with-dependencies.jar’)

+ androidTestCompile
’org.robolectric:robolectric:2.3+’

...

}

4 EMPIRICAL EVALUATION
In this section, we describe our dataset construction in Section 4.1
and our experimental settings in Section 4.2, followed by research
questions in Section 4.3 and experiment results in Section 4.4. Fi-
nally, we discuss the threats to validity in Section 4.5.

4.1 Dataset
We evaluate our approach to build-script repair on a dataset of build
fixes extracted from the TravisTorrent dataset [9] snapshot at Feb-
ruary 8, 2017. The tool and bug set used in our evaluation are all
available at our website 1. TravisTorrent provides easy-to-use Travis

1HireBuild Dataset and Tools: https://sites.google.com/site/buildfix2017/

https://sites.google.com/site/buildfix2017/
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Table 1: Dataset Summary
Type Count
# Total Number of Projects 54
# Maximum Number of Fix From Single Project 25
# Minimum Number of Fix From Single Project 1
# Average Number of Fix Per Project 3.2
# Total Number of Fix 175
# Training Fix Size 135
# Testing Fix Size 40
# Reproducible Build Failure Size for Testing 24

CI build data to the masses through its open database. Though it
provides large amount of build logs and relevant data, our point
of interest is build status transition from error or fail status to pass
status with changes in build scripts. From the version history of all
projects in the TravisTorrent dataset, we identified as build fixes the
code commits that satisfy: (1) the build status of their immediate
previous version is fail / error; (2) the build status of the committed
version is success; and (3) they contain only changes in gradle build
scripts. Since HireBuild focuses on build script errors, we use code
commits with only build-script changes so that we can filter out unit
test failures and compilation failures. Our dataset may miss the more
complicated build fixes that involve a combination of source-code
changes and build-script changes, or a combination of build-script
changes from different build tools (e.g., Gradle and Maven). Hire-
Build currently does not support the generation of such build fixes
cross programming languages. Actually, fixing such bugs are very
challenging and is not supported by any existing software repair
tools.

From the commit history of all projects, we extracted a dataset
of 175 build fixes. More detailed information about our data set is
presented in Table 1. We can see that these fixes are from 54 different
projects, with maximal number of fixes in one project to be 25.

We ordered the build fixes according to the code commit time
stamp, and use 135 (75%) earlier build fixes as the training set and
the rest 40 build fixes (25%) as the evaluation set. Therefore, all
the build fixes in our evaluation set are chronically later than
the build fixes in our training set. Note that we combine all the
projects in both training sets and evaluation sets, so our evaluation is
cross-project in nature.

Among these 40 build fixes for evaluation, we successfully repro-
duced 24 build failures. The remaining 16 build failures cannot be
reproduced in our test environment for the following three reasons:
(1) a missing library or build configuration file was originally mis-
sing from the central repository and caused the build failure, but they
are added later; (2) a flawed third-party library or build configuration
caused the build failure, but the flaws are fixed and flawed releases
are no longer available on the Internet; and (3) the failure can be
reproduced only with specific build commands and options which
are not recorded in the repository. For case (3), we were able to
reproduce some bugs by trying common build command options.
We also contacted the TravisCI people about the availability of such
commands / options, but they could not provide them to us. For
training set, we did not reproduce build failures since we trust the
software version history in TravisTorrent that human made changes
resolved the build failures and we extracted only seed fixes from
training set.

Table 2: Project-wise Build Failure / Fix List
Project Name #Failures #Correctly Fixed
aol/micro-server 2 1
BuildCraft/BuildCraft 2 0
exteso/alf.io 1 1
facebook/rebound 1 1
griffon/griffon 1 0
/btrace 1 1
jMonkeyEngine/jmonkeyengine 2 0
jphp-compiler/jphp 1 0
Netflix/Hystrix 2 0
puniverse/quasar 6 2
RS485/LogisticsPipes 5 5
Total 24 11

4.2 Experiment Settings
TravisTorrent datset provides Travis CI build analysis result as SQL
dump and CSV format. We use SQL dump file for our experiment.
We use a computer with 2.4 GHz Intel Core i7 CPU with 16GB of
Memory, and Ubuntu 14.10 LTS operating system. We use MySQL
Server 5.7 to store build fix changes. In our evaluation, we use 600
minutes as the time out threshold for HireBuild.

4.3 Research Questions
In our research experiment, we seek to answer following research
questions.

• RQ1 How many reproducible build failures in the evaluation
set can HireBuild fix?

• RQ2 What are the amount of time HireBuild spends to fix a
build failure?

• RQ3 What are the sizes of build fixes that can be successfully
fixed and that cannot be fixed?

• RQ4 What are the reasons behind unsuccessful build-script
repair?

4.4 Results
RQ1: Number of successfully fixed build failures. In our evalua-
tion, we consider a fix to be correct only if there is no build failure
message in build log after applying patch, and the build result (i.e.,
all compiled classes) are exactly the same as those generated by the
manual fix. Among 24 reproducible build failures in the test set, we
can generate the correct fix for 11 of them. Table 2 shows the list
of projects that are used for testing. Columns 2 and 3 represent the
number of build failures and the number of those fixed successfully.

Figure 3 shows the breakdown of successful build fixes according
the type of changes. With HireBuild, we can correctly generate 3
fixes about gradle option changes, 3 fixes about property changes, 2
fixes about dependency changes and external-tool option changes,
respectively, and 1 fix about removing incompatible statements.
Example 8 shows a build fix that is correctly generated by HireBuild
falling in the category of external-tool option changes. The build
failure is caused by adding a new option which is compatible only
with Java 8. So the fix is to add an if condition to check the Java
version. Note that this fix involves applying the combination of two
insertion patches, but HireBuild still can fix it as there are a seed fix
that contains both build-fix patterns.
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Figure 3: Breakdown of Build Fixes

Example 8 A Build Fix Correctly Generated By HireBuild (puniverse/-
quasar:33bb265)

+if(JavaVersion.current().isJava8Compatible()){

+tasks.withType(Javadoc) {

options.addStringOption('Xdoclint:none', '-

quiet')

+ }

+ }

Figure 4: Patch List Sizes

RQ2: Time Spent on Fixes Time spent on fixes is very important
for build failures as they need to be fixed timely. The size of patch
list has impact on automatic build script repair. If patch list size is
too large, it will take large time span to generate fix sequence. We
compare patch list size of build failures we can correctly fix and
patch list size of build failures we cannot correctly fix, and present
the result in Figure 4. From the figure, we can see that for fixed
build failures, the patch list has minimum size of 68 and maximum
size of 2,245, while median is 486. For non-fixed build failures,
patch list minimum, median and maximum are 8, 223 and 1,266
respectively, which are lower than fixable build failure’s patch list.
The reason behind this result is that for non-fixable build failure,
HireBuild cannot find similar build fixes in the training set, and thus
the generated build-fix patterns cannot be easily mapped to AST
nodes in buggy scripts.

For the 11 fixed build failures, we compared in Figure 5 the time
HireBuild spent on automatic fixing build failures with the manual
fix time of the build failures in the commit history. Manual fix time
comes from commit information and we use the time difference
between build failure inducing commit and build failure fix commit
as the manual fix time. From Figure 5, we can see that build script
fix generated by our approach takes minimum 2 minutes, maximum
305 minutes and median value of 44 minutes. While human fix takes
minimum less than one minute, maximum 5,281 minutes and median
42 minutes. We can see that for the fixable build failures, HireBuild
fixed them with time comparable to manual fixes.

Figure 5: Amount of Time Required for Build Script Fix

Figure 6: Actual Fix Sizes

Table 3: Cause of unsuccessful patch generation
Fix Type #of Failures
Project specific change adaption 2(15%)
No matching patterns 6(46%)
Dependency resolution failures 3(23%)
Multi-location fixes 2(15%)

RQ3: Actual Fix Size. Patch size has impact on automatic pro-
gram repair. According to Le et al. [21], bugs with over six lines
of fix are difficult for automatic repair. In our dataset we have not
performed any filtering based on actual fix size. But during result
analysis, we performed statistical analysis to find out the sizes of
build-fix patches, and the difference in size between the patches
our approach can correctly generate and the patches our approach
cannot. According to Figure 6, fixed build script failures contain
minimum one, maximum two and median one. Actually 9 of the
fixes contain only 1 statement change, and 2 of the fixes contain
only 2 statement changes. For non-fixed Gradle build script failures
minimum change size is one, while maximum and median change
size is 11 and 1 respectively. Therefore, our approach mainly works
in the cases where the number of statement changes is small (1 or
2), which is similar to other automatic repair tools.

RQ4: Failing reasons for the rest 13 build failures. For 54.16%
of evaluated build failures, our approach cannot generate build fix.
So, we performed manual analysis to find out why our approach
fails. We check whether the reason is related to generation of version
numbers, dependency names, etc. Then we categorize these failure
reasons to four major groups: (1) Project specific change adaption,
(2) Non-matching patterns, (3) Dependency resolution failures, and
(4) Multi-location fixes, as shown in Table 3.

Project specific change adaption indicates those changes that
are dependent on project structure, file path etc. As build script
manages build and its configuration, so there are project specific
change issues and with our approach we cannot adapt the build-fix
patterns. Example 9 shows such a build fix where it uses a specific
path in build script.

Non-matching patterns indicates that our automatic patterns ge-
neration failed to provide required pattern that can resolve the build
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Example 9 Project specific change (Netflix/Hystrix:6600947)

+ if ( dep.moduleName == ’servlet-api’ ) {

+ it.artifactId[0].text() == dep.moduleName
&&

+ asNode().dependencies[0].dependency.find{

+ ...

+ }}

+ }

failure. HireBuild could not generate appropriate patterns for 6 failu-
res which account 46% of failures. This may be due to limited size
of training data and insufficient number of available build fixes that
we used for template generation.

Dependency resolution failures happens for some project when
HireBuild did not find an actual dependency from central repository
based on build log error. Even if we find dependency based on miss-
compiled classes, that may not match with actual fixing. Example
10 shows such a dependency update where our approach failed to
generate the dependency name.

Example 10 Dependency resolve Issue (BuildCraft/BuildCraft:12f4f06)

- mappings = ’snapshot_20160214’

+ mappings = ’stable_22’

Multi-Location Fixes happen when we need to apply multiple
patches to fix a single build failure. HireBuild considers only limited
combinations of patches as introduced in Section 3.4.2. Example 11
shows such a case where our patch generation technique generated
the two “exclude” statements in two different patches. But this build
failure is fixed only when we apply both “exclude” statement change
simultaneously.

Example 11 Dependency resolve Issue (joansmith/quasar:64e42ef)

-jvmArgs ’ -Xbootclasspathp:

${System.getProperty(üser.home)̈}jsr166.jar’

-testCompile ’org.testng:testng:6.9.6’

+testCompile(’org.testng:testng:6.9.6’) {

+exclude group:’com.google.guava’,
module:’*’

+exclude group:’junit’, module:’*’

+}

4.5 Threats of Validity
There are three major threats to the internal validity of our evaluation.
First, there can be mistakes in our data processing and bugs in the
implementation of HireBuild. To reduce this threat, we carefully
double checked all the code and data in our evaluation. Second,
the successful fixes generated by HireBuild may still have subtle
differences with the manual fixes. Furthermore, the manual fixes
that we use as the ground truth may in itself has flaws. To reduce
this threat, we used a strict criterion for correct fixes. We need the
automatically generated fix to generate exactly the same build results
as those generated by the manual fix. Third, the manual fixing time

collected in the commit history may be longer the actual fixing time
as developers may choose to wait and not to fix the bug. We agree
that this can happen but we believe the difference is not large as
developers typically want to fix failure as soon as possible so that it
does not affect other developers.

The major threat to the external validity of our evaluation is that
we use a evaluation set with limited number of reproducible bug fixes.
Furthermore, our evaluation set contains only build fixes where only
Gradle build scripts are changed. So it is possible that our conclusion
is limited to the data set, Gradle-script fixes, or Gradle-script-only
fixes. Figure 3 shows that our evaluation set already covers a large
range of change types, and we plan to expand our evaluation set
to more build failures and reproduce more bugs as TravisTorrent
data set grows overtime. Gradle is the most widely adopted building
system now, and its market share is still increasing. We also did
a statistics on the number of build fixes with both Gradle-script
changes and other file-changes and found 263 of them. Compared
with 175 build fixes in our dataset, Gradle-script-only fixes accounts
for a large portion of build script fixes for Gradle systems.

5 DISCUSSION
Patch Validation and Build Correctness. In the patch validation
stage, HireBuild deems a patch as valid if applying it results in a
successful build message, and all the files that are compiled in the
most recent successful build are still compiled as long as they are not
deleted. Our evaluation uses a more strict constraint which requires
the compiled files in the automatically fixed build to be exactly the
same as those in the manually fixed build. The evaluation results
show that our patch validation strategy is very effective because in all
11 fixed builds in our evaluation, the first patches passing validation
are confirmed to be correct patches. The reason is that, based on
the same compiler, once a source file is successfully compiled, it is
unlikely to be compiled in different ways. The only exception is that
a library-class reference is resolved to a wrong class when a wrong
dependency is added. Furthermore, to pass compilation, the wrong
class must accidentally have compatible behaviors (e.g., methods)
with the correct class. Such coincidence is not likely to happen.
Build Environment. Build environment defines the environment
of a system that compiles source code, links module and generates
assembles. From developer’s point of view, they install all requi-
red dependencies like Java, GCC and other frameworks. But when
projects are built in different environment then build problem can
be generated. For example, if certain project has dependency on
Java 1.8 then building the project in build environment with Java
1.7 might generate build failure. This a challenge for build automa-
tion as well as automatic build repair. During software evaluation,
developers change environment dependency based on functional
requirements or efficiency. With version changes, developers build
the software having those changed dependencies. But for build script
repair, if we change the version of any dependency and keep the
build environment as it was before, then the fix might not resolve
build failures. For Android projects environment, this issue creates
greater impact as in most Gradle build script it mentions SDK ver-
sion, build tool version etc. inside build script. As a result, build
script version dependency and build environment should be synced
to avoid build breakage.
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6 RELATED WORK
6.1 Automatic Program Repair
Automatic program repair is gaining research interest in the soft-
ware engineering community with the focus to reduce bug fixing
time and effort. Recent advancements in program analysis, synthe-
sis, and machine learning have made automatic program repair a
promising direction. Early software repair techniques are mainly
specific to predefined problems [19, 37, 45, 50]. Le Goues et al. [14]
GenProg which is one of the earliest and promising search based
automatic patch generation technique based on genetic program-
ming. Patch generated by this approach follows random mutation
and use test case for the verification of the patch. Later in 2012, aut-
hors optimized their mutation operation and performed systematic
evaluation 105 real bugs [22]. RSRepair [32] performs similar patch
generation based on random search. D. Kim et al. [20] proposed an
approach to automatic software patching by learning from common
bug-fixing patterns in software version history, and later studied
the usefulness of generated patches [43]. AE [46] uses determinis-
tic search technique to generate patch. Pattern-based Automatic
Program Repair(PAR) [20] uses manually generated templates lear-
ned from human written patches to prepare a patch. PAR also used
randomized technique to apply the fix patches. Nguyen et al. [30]
proposed SemFix, which applied software synthesis to automatic
program repair, by checking whether a suspicious statement can
be re-written to make a failed test case pass. Le et al. [21] mines
bug fix patterns for automatic template generation and uses version
control history to perform mutation. Prophet [24] proposed a pro-
babilistic model learned from human written patched to generate
new patch. The above mentioned approaches infers a hypothesis
that new patch can be constructed based on existing source. This
hypothesis also validated by Barr et al.[8] that 43 percent changes
can be generated from existing code. With this hypothesis, we propo-
sed first approach for automatic build failure patch generation. Tan
and Roychoudhury proposed Relifix [42], a technique that taking
advantage of version history information to repair regression faults.
Smith et al. [38] reported an empirical study on the overfitting to test
suites of automatically generated software patches. Most recently,
Long and Rinard proposed SPR [23], which generates patching rules
with condition synthesis, and searches for the valid patch in the
patch candidates generated with the rules. Angelix [28] and Direct-
Fix [27] both use semantics-based approach for patch generation.
To fix buggy conditions, Nopol [49] proposes test-suite based repair
technique using Satisfiability Modulo Theory(SMT). Although our
fundamental goal is same, but our approach is different than others
in several aspects: 1) Our approach is applicable for build scripts, 2)
We generate automatic fix template using build failure log similarity,
3) With abstract fix template matching we can generate fix candidate
lists with reasonable size.

6.2 Analysis of Build Configuration Files
Analysis of build configuration files is growing as an important as-
pect for software engineering research such as dependency analysis
for path expression, migration of build configuration file and empiri-
cal studies. On dependency analysis, Gunter [7] proposed a Petri-net
based model to describe the dependencies in build configuration
files. Adams et al. [5] proposed a framework to extract a dependency

graph for build configuration files, and provide automatic tools to
keep consistency during revision. Most recently, Al-Kofahi et al. [6]
proposed a fault localization approach for make files, which provides
the suspiciousness scores of each statement in a make files for a
building error. Wolf et al. proposed an approach [48] to predict build
errors from the social relationship among developers. McIntosh et
al. [26] carried out an empirical study on the efforts developers
spend on the building configurations of projects. Downs et al. [10]
proposed an approach to remind developers in a development team
about the building status of the project. On the study of building
errors, Seo et al. [36] and Hassan et al. [15, 17] carried out empirical
studies to categorize build errors. Their study shows that missing
types and incompatibility are the most common type of build errors,
which are consistent with our findings.

The most closely related work in this category is SYMake deve-
loped by Tamrawi et al. [41]. SYMake uses a symbolic-evaluation-
based technique to generate a string dependency graph for the string
variables/constants in a Makefile, automatically traces these values
in maintenance tasks (e.g.,renaming), and detect common errors.
Compared to SYMake, the proposed project plans to develop build
configuration analysis for a different purpose (i.e., automatic soft-
ware building). Therefore, the proposed analysis estimates run-time
values of string variables with grammar-based string analysis instead
of string dependency analysis, and analyzes flows of files to identify
the paths to put downloaded files and source files to be involved.
On migration of build configuration files, AutoConf [1] is a GNU
software that automatically generates configuration scripts based on
detected features of a computer system. AutoConf detects existing
features (e.g., libraries, software installed) in a build environment,
and configure the software based on pre-defined options.

7 CONCLUSION AND FUTURE WORK
For Source code, automatic patch generation research is already in
good shape. Unfortunately, existing techniques are only concentra-
ted to source code related bug fixing. In this work, we propose the
first approach for automatic build fix candidate patch generation for
Gradle build script. Our solution works on automatic build fix tem-
plate generation based on build failure log similarity and historical
build script fixes. For extracting build script changes, we developed
GradleDiff for AST level build script change identification. Based
on automated fix template we generated a ranked list of patches. In
our evaluation, our approach can fix 11 out of 24 reproducible build
failures.

In future, we plan to increase training and testing data size for
better coverage of build failures with better evaluation and perform
study on patch quality for the patches generated by out tool. Moreo-
ver, change patterns from general build script commits may also be
useful, and we have a plan to work on build script change patterns
regardless of build status. Apart from that, we are planning to apply
search based technique such as genetic programming with fitness
function on our patch list to better rank our generated patches and
apply combination of patches.
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