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Abstract
Virtual Reality (VR) is an emerging technique that provides a unique
real-time experience for users. VR technologies have provided revo-
lutionary user experiences in various scenarios (e.g., training, educa-
tion, gaming, etc.). However, testing VR applications is challenging
due to their nature which necessitates physical interactivity, and
their reliance on specific hardware systems. Despite the recent ad-
vancements in VR technology and its usage scenarios, we still know
little about VR application testing. To fill up this knowledge gap, we
performed an empirical study on 314 open-source VR applications.
Our analysis identified that 79% of the VR projects evaluated did
not have any automatic tests, and for the VR projects that did, the
median functional-method to test-method ratios were lower than
those of other project types. Moreover, we uncovered tool support
issues concerning the measurement of VR code coverage, and the
assertion density results we were able to generate were relatively
low, with an average of 17.63%. Finally, through amanual analysis of
370 test cases, we identified the different categories of test cases be-
ing used to validate VR application quality attributes. Furthermore,
we extracted which of these categories are VR-attention, meaning
that test writers need to pay special attention to VR characteristics
when writing tests of these categories. We believe that our findings
constitute a call to action for the VR development community to
improve their automatic testing practices and provide directions for
software engineering researchers to develop advanced techniques
for automatic test case generation and test quality analysis for VR
applications. Our replication package containing the dataset we
used, software tools we developed, and the results we found, is
accessible at https://doi.org/10.6084/m9.figshare.19678938.

CCS Concepts
•Human-centered computing→ Virtual reality; • Software and
its engineering→ Software testing and debugging.
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1 Introduction
Virtual Reality (VR) applications provide an immersive experience
to end-users with a computer-generated environment that includes
scenes and objects that appear real in their surroundings. Although
the term virtual reality was introduced three decades ago [1], its
real surge started around 2016, with the release of VR devices such
as Oculus Rift [2] and HTC Vive [3], and software support from the
likes of Unity [4] and Unreal Engine [5]. Indeed, both industrial and
personal usage have surged in recent years. According to a 2021
study [6], the global virtual reality market exhibited a significant
growth of 42.3% in 2020 compared to the years 2017-2019, and this
market is projected to reach over $80 billion within the next seven
years. To accurately simulate the user experience and to support
multiple areas high-quality VR software is essential. However, ex-
isting automated techniques’ support for VR software development
is still at an early stage with few available tools and frameworks,
especially for VR testing. The importance of software testing and
quality assurance has been widely confirmed in both academic and
industrial communities. To address the challenges of software test-
ing and design appropriate solutions, researchers have carried out
many testing-practices studies. These studies employed different
approaches ranging from developer-oriented interviews [7] to large-
scale quantitative and qualitative empirical studies [8, 9]. Moreover,
test-practice investigations have been reported for different applica-
tion types: mobile applications [10, 11], Machine learning applica-
tions [12], and others [13–17]. However, similar studies have found
that testing VR applications are a challenging task [18–20]. This is
due to factors such as the complex structure of VR projects, their
goal of providing a user-immersive experience, and issues related
to inadequate tool support for VR development, debugging, and
testing activities. Existing VR research activities have focused on
development support, such as performance optimization [21], code
dependency [22], and code smell detection [23]. In addition, there
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are several studies on Game applications, such as regression test-
ing for Games [24], and a differentiation study between Game and
Non-Game applications [25]. Yet, none of the existing works stud-
ied characteristics of VR software testing in open-source software.
To remedy this knowledge gap, we opted to perform a qualitative
and quantitative analysis of the existing testing practices in VR
applications.

We carried out an empirical study on 314 VR applications in this
paper, ranging from small-scale projects to projects backed by large
companies and organizations likeMicrosoft and Unity Technologies,
where we analyzed the prevalence, quality, and effectiveness of
existing VR tests. Then, we analyzed 370 VR tests in order to build
a taxonomy based on their characteristics, and determined which
of these categories are VR-attention.
Our main research questions are:
● RQ1: To what extent are test cases developed for VR applications?
Motivation. This question allowed us to estimate the current
effort that VR developers put into testing their projects and un-
derstand the potential need for VR testing support.
Answer.We discovered test cases in only 61 out of the 314 VR
projects we analyzed. Moreover, we found that the current ratio
of code-to-test is very low using both class and method granular-
ities. Indeed, across different VR categories, they were more than
14 times lower than those found by Vidacs et al. [26], who per-
formed similar analyses on test-to-code ratios. We believe these
results indicate an urgent need for improved testing practices
and support.
● RQ2: How effective are the test cases developed in VR applica-
tions?
Motivation. To develop a deeper understanding of the status
quo of VR testing, we adopted the assertion density metric to
evaluate the effectiveness of the existing tests.
Answer. The assertion density values are lower than the recom-
mended rates. Themedians were lower than 17.46%, which itself is
lower than the rate for software applications in general and even
lower than the values associated with the comparatively novel
mobile applications. In addition, the assertion density values we
found are linked to higher bug rates within software projects [27].
This finding indicates that the testing practices of VR projects
are less effective than other software project types.
● RQ3: What is the design quality of test cases developed for VR
applications?
Motivation.While assertion density reflects on the effectiveness
of test methods, it does not inform us of their design quality. With
this question, we wanted to evaluate the quality of existing VR
Software tests, as we believe these findings can help guide future
testing tool design.
Answer. Using the work of De Bleser et al. [28] as a guide, we
analyzed the tests for six smell types. We found that on average
38.43% of a project’s tests have at least one smell type, and a
project can have as much as 92% smelly tests. This indicates that
test smells are common within most VR test methods, lowering
their design quality.
● RQ4: What are the different categories of VR Test Cases and
which categories require specific VR-attention?
Motivation. With this question, we aimed to discover testing

scenarios that reflect characteristics of VR applications. VR ap-
plications differ from other application types because of their
hardware-specific support, new user experiences, and unique
immersive design, among other characteristics.
Answer. In our study, we manually analyzed 370 randomly-
selected VR test methods. In total, we defined 13 main testing
categories, such as Physics Test, Animation Test, Graphics Test, As-
set Test, etc., which are detailed within Section 4.4. Furthermore,
We found four main categories and two subcategories are VR-
attention, meaning that test writers need to pay special attention
to aspects specific to VR applications when writing tests of these
categories.

The contributions of this paper are:
● The first quantitative and qualitative study on existing test prac-
tices of VR applications.
● The first tool for test effectiveness analysis and test smell identi-
fication for Unity-based projects.
● A detailed test case effectiveness analysis via the assertion density
metric, and a detailed test-quality analysis through test-smell
detection.
● A taxonomy containing 13 main test categories which reflect the
characteristics of the VR applications, as well as the identification
of VR-attention categories within this taxonomy.
This paper is organized as follows: Section 2 presents the back-

ground which defines terms we later use in our manual analysis;
Section 3 contains details about the dataset and the methodology
used within our automated andmanual analysis; Section 4 describes
the evaluation which answers all four research questions, followed
by threats to validity in Section 5. Section 6 includes related work.
Section 7 describes the implications of this work, and we conclude
our research in Section 8.

2 Background
Automatic software testing allows developers to test application
code in an automatic, rapid, and reliable way. Similar to traditional
software applications, automated software testing can also be ap-
plied to VR applications. In this study, we analyzed the test charac-
teristics of 314 Unity-based VR applications. We focused on Unity
as it is one of the most popular frameworks for developing VR appli-
cations [29]. We found that VR tests mainly focus on the behavior
of the different VR subsystems and class components. However,
while discussing VR testing, familiarity with how Unity works and
some technical terms is required. These details are presented in the
following paragraphs:
Physics System: ensures that the virtual objects correctly respond
to different forces such as collision and gravity. The Unity plat-
form provides Rigidbody APIs which allow the usage of the physics
engine to control the objects. Collision and Colliding are also im-
portant aspects of VR projects, as they define how virtual objects
react to overlapping with or without physics effects, respectively.
Graphics System: enables developers to control the appearance
of VR applications. It includes Rendering, Display, Camera, Light-
ing, etc. In 3-D graphic design, rendering is the process of adding
shading, color, and lamination to a 2-D or 3-D wireframe in order
to create life-like images on a screen. This process can be preloaded
or occur in real-time when users interact with VR applications.
Display is related to displaying the rendered objects within the
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VR scene, which users view through hardware such as monitors
or head-mounted devices. Unlike non-VR applications, VR applica-
tions can create multiple cameras in the same scene, and the display
will update when the camera switches or the location changes. The
camera represents the view angle from which the user sees the
virtual world.
Animation System: allows developers to animate target objects
via jumping, moving, stopping, rotating, etc. Animation design in
VR applications is more complicated than its non-VR counterpart.
With fixed angles in non-VR applications, animation design is a
linear process that focuses on the representation from a locked
direction or view. However, in VR applications, animating user
surroundings is a parallelized process, as developers need to ensure
the correctness of the representation from any possible angle.
Other terms: GameObject: the fundamental class for all the objects
in a virtual world. By combining its different controls and features,
developers can use it to enable custom functions such as moving
objects. Colliders represent the invisible physical shapes of objects.
The Physics system uses them to decide physical effects such as
those that occur when objects overlap.

3 Research Approach
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Figure 1: Overview of Research Approach

The research approach overview is illustrated within Figure 1.
In this section, we will first introduce the studied dataset, then
describe the AST-based automatic analyses used to measure the
test prevalence, efficiency, and quality, and eventually discuss the
manual analysis used to discover the taxonomy of VR tests as well
as identify VR-attention test categories, where test writers need to
pay special attention to the aspects of VR.

3.1 Dataset
Within this work, our goal was to study a group of Open Source
Virtual Reality software projects that were built with Unity, as it is
one of the most popular Game and VR development engines [29].
Initially, we started with the dataset of Nusrat et al. [21] as it con-
tains 100 manually-verified VR projects that use Unity, three of
which were unobtainable due to de-listing. We expanded our set
with projects from GitHub. Multiple search queries for VR projects
based on Unity were executed, using keywords such as VR, Virtual
Reality, VR Unity etc., and applying the same conditions as those
specified by Nusrat et al. [21] regarding the number of commits.
The results of these queries were then merged and independently
reviewed by two co-authors in order to extract projects that were

Unity-based VR software. After discussion to resolve any differ-
ences, the authors added an additional 217 projects to the dataset.
Out of the 314 projects within our set, 164 are Independent, generally
owned and maintained by one contributor and with few secondary
contributors, 67 are Organizational projects, generally owned by
an Organization on Github and backed by companies and organi-
zations like Microsoft, Vive, etc., and finally, 83 Academic projects,
which are composed of class projects, assignments, and research
projects maintained by students. All the VR projects within our set
contain a minimum of 100 commits, with commit averages of 954.44,
365.47, 359.28 and commit medians of 345, 205, and 220 respectively
for Organizational, Independent and Academic Projects.

Furthermore, they have averages of 119.20, 4.5, 7.37 and medians
of 7, 3, 5 for the number of committers, and averages of 830, 655.17,
508 and medians of 641, 541, 337 for the number of days between
their first and most recent commits, respectively for Organizational,
Independent and Academic projects.

After performing the automatic analysis described within 3.2.2,
we found that 61 projects within our set contained one or more
tests, 21 of which were Academic, 24 of which were Independent,
and 16 of which were Organizational.

3.2 Methodology of Automatic Analysis
3.2.1 Static Analysis of Unity Projects Since Unity makes use of the
standard .Net Framework, alongside its internal frameworks and
classes, and the C# programming language for its scripting [30], we
needed to use an AST generator that supported these technologies.
We opted to use SrcML [31] to generate the ASTs of the Unity
C# code. SrcML is a research tool that allows the generation of
ASTs for various programming languages, which facilitates the
extension of our approach and tools to other sets of projects that
use different programming languages. It supports C#, and does not
rely on compilation to generate ASTs, thus allowing us to avoid
any compilation-related issues. For each VR project, we analyzed
its repository to extract the C# code files and then generated the
AST of each file to perform the different analyses described in the
following sections. It’s important to note that the majority of tests
we found were Unit and Integration tests. Although different testing
approaches have been developed for Game projects such as Search-
based, and Goal-directed testing, as discussed by Albaghajati et
al. [32], and which by extension can be applied to VR Game projects,
we have found no evidence of their usage within our set.
3.2.2 VR Test Cases Prevalence In order to evaluate the prevalence
of test cases within our set of VR projects, we counted the number
of test methods and classes, and functional methods and classes of
each project. According to the Unity documentation [33] and via the
manual analysis we performed, detailed in 3.3, we found that test
cases are labeled with [Test] or [UnityTest] or [MTest], and test
classes are those that contain one or more test cases. Using these
data points, we calculated the following metrics for each project:

𝑇𝑒𝑠𝑡𝑇𝑜𝐶𝑜𝑑𝑒𝑀𝑒𝑡ℎ𝑜𝑑𝑅𝑎𝑡𝑖𝑜 =
𝐶𝑜𝑢𝑛𝑡(𝑇𝑒𝑠𝑡𝑀𝑒𝑡ℎ𝑜𝑑𝑠)

𝐶𝑜𝑢𝑛𝑡(𝐹𝑢𝑛𝑐𝑀𝑒𝑡ℎ𝑜𝑑𝑠)

𝑇𝑒𝑠𝑡𝑇𝑜𝐶𝑜𝑑𝑒𝐶𝑙𝑎𝑠𝑠𝑅𝑎𝑡𝑖𝑜 =
𝐶𝑜𝑢𝑛𝑡(𝑇𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑒𝑠)

𝐶𝑜𝑢𝑛𝑡(𝐹𝑢𝑛𝑐𝐶𝑙𝑎𝑠𝑠𝑒𝑠)

Based on the work of Klammer et al. [34] andWilliams et al. [35],
these metrics adequately represent the relative frequency of test
code within our VR projects.
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3.2.3 VR Test Cases Effectiveness A practical way of measuring the
effectiveness of tests in a software project is to calculate the Code
Coverage [36], which denotes the degree to which the functional
code is executed after a test suite finishes running. However, we
faced a plethora of problems when attempting to generate these
reports due to issues ranging from compilation problems to a lack
of compatibility of code coverage measurement with some versions
of Unity.

To circumvent these issues, opted to use the Assertion Density
metric to evaluate the effectiveness of the test cases we collected.
This metric is calculated via the ratio of the number of assertions
to the length of test cases that contain them. The usage of this
metric within previous works regarding testing supports its effec-
tiveness [27, 37]. The equation for this metric is:

𝐴𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑁𝑏𝐴𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠
𝑇𝑒𝑠𝑡𝐿𝑂𝐶𝑠

3.2.4 VR Test cases Design Quality Having collected information
about the prevalence and effectiveness of tests within our project
set, we wanted to learn more about their quality. In order to achieve
this goal, we scanned these tests for test smells [38–40]. Test smells
are similar to regular code smells in being symptomatic of technical
debt and predicting future problems, but they are specific to test
code. We considered six test smells from the work of De Bleser et
al. [28], as they were found to be the most prevalent in a collection
of previous works [41, 42]. These smells are:
Assertion Roulette (AR): This occurs when a test case contains
more than one assertion, and more than one of which does not
provide a message when detecting an issue. This makes it hard to
diagnose which problems are present within the functional code
being tested.
General Fixture (GF): A test fixture is too general if it initializes
fields that are not used by one or more test methods, making it
difficult to discern which fields are being shared by the different
test methods within a test class.
Sensitive Equality (SE): If a test case has an assertion that com-
pares the state of objects by comparing their representations as
text, for example by using their ToString() methods, it makes itself
susceptible to errors due to irrelevant textual representation details
such as spaces.
Eager Test (ET): A test that evaluates more than one functional
code method with the same fixture is Eager. This smell violates
the principle that every test case should only test one method, and
that one test failure should only signify issues within one specific
method, not another irrelevant method.
Lazy Test(LT): A test case is lazy if it tests the same functional
method using the same fixture as another test method. The problem
this smell implies is that after modifying one function that is being
tested, multiple test methods may need to be updated accordingly.
Thus this smell affects the maintainability of the test cases.
Mystery Guest(MG): A test case has this smell if it uses external
resources that are not managed by a fixture or are not Mock objects.
This smell may cause issues since external resources might change
over time or be unavailable during test-case execution. For example,
a test method can fail if a specific database or file is not available
during its execution.
3.2.5 Evaluation of smell-detection tool To evaluate the accuracy
of our smell-detection tool and verify the correctness of our findings,

we first applied our automated approach to four randomly selected
VR projects which were manually determined to have tests within
them. Then two co-authors manually evaluated the same projects
separately by labeling the test methods with any corresponding
smell types. Both co-authors found 220 test methods within these
four projects, which is the same number found by the tool. An
average Cohen Kappa [43] of 0.92 was found between the authors
across the different smell types, signaling high agreement, and any
differences were then resolved via discussion. Upon evaluating the
automatically detected smells using the manual observations as a
baseline, on average, an accuracy of 91.35%, a recall of 92.62%, and
an F-1 score of 91.98% were found across the aforementioned test
smell categories. As noted in Section 4.3, no instances of Lazy Test
and Sensitive Equality were found via the manual or automatic
analyses we performed. To verify the correctness of our tool for
these smells, one co-author, who did not work on developing the
test analysis tools, developed one test stub for the sensitive equality
smell and two test stubs for the Lazy test smell and then verified
that these smells were correctly detected.

3.3 Methodology of Manual Analysis
To explore the characteristics of VR test cases we carried out a
manual analysis with a focus on discovering unique testing scenar-
ios, exploring the test design patterns, and testing goals. Using our
automatic results generated within 4.1, we constructed our initial
set of tests, which was composed of 8723 tests. In order to construct
a representative sample with 95% confidence and 5% error, we ran-
domly selected 370 tests for manual analysis. We believe relying
on a random selection process allows us to obtain a diverse set of
tests that should contain the most prevalent test categories. These
tests were from 36 different projects, out of a total of 61 VR projects
with tests. Since there were no existing categories for authors to
use as a reference when this study was conducted, we designed
our manual approaches to minimize bias, follow a similar process
to existing works which created taxonomies in software [44, 45]
and to abide by the recommendations outlined by Usman et al. [46]
concerning the construction of taxonomies. First, for the planning
phase, three co-authors agreed on the area being VR testing, the
goal being the identification of which aspects of VR projects the
test cases are trying to validate, and the classification structure as
a tree. Furthermore, it was determined that a qualitative approach
would be optimal and that the tests would be selected from the
existing set of VR projects with tests. Second, for the identification
and extraction phase, two of the co-authors separately observed all
the test methods and their related source code and also performed
an exploration of Unity documentation and VR developers’ forums
to generate a comprehensive report for every test method. This re-
port included details such as Unity API calls, observed tested target
and environment behavior, test scenario description, text method
code pattern, and corresponding tested functional code pattern.
Then, the third co-author with previous VR experience was asked
to rejoin this process. This was done in order to minimize the bias,
as this author did not participate in deciding the categorization of
the VR test code designs that were uncovered in the earlier step.
These three co-authors then categorized all 370 test methods sepa-
rately by reviewing the observed records. Eventually, voting within
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three rounds of consensus meetings was carried out to finalize the
results and resolve any disagreements and remove any redundan-
cies and inconsistencies. Before resolving the disagreements, Fleiss’
Kappa [47] coefficient was calculated, and was 0.54, indicating a
moderate agreement between co-authors. Third, for the Design and
construction phase, in order to construct the taxonomy composed
of the different VR testing categories, a card-sorting process [48]
was performed by the three authors, which grouped test methods
of similar characteristics into Main categories, then where appli-
cable, appropriate sub-categories. As noted within Section 4.3, a
trend of one test case testing multiple functionalities was observed,
hence, some tests may fall into more than one category within this
taxonomy. Furthermore, specific examples along with more general
definitions were provided in order to facilitate the usage and adop-
tion of this taxonomy. Finally, for the Validation phase, a fourth
co-author with VR development experience was able to verify the
relevance of the different categories by connecting them to differ-
ent aspects of VR software development and documentation of VR
development within Unity. Similar to the results of the automatic
analysis, the majority of tests we manually analyzed were Unit and
Integration tests.

4 Empirical Evaluation
4.1 RQ1: Extent of Developing VR Test Cases
In order to identify the prevalence of test code in VR applications,
we calculated the Method and Class ratios of test code in relation
to functional code for VR projects with test cases. Recommended
practices indicate that the optimal test code to functional lines of
code ratio is 3:1, or in more general cases between 1:1 and 1:10 [49].
Indeed, it is recommended to add test code in parallel to functional
code, where one test class should evaluate one functional class, and
one test method should evaluate one functional method. This sug-
gests that when considering the Method and Class granularity of
ratios, the ideal values are close to 1. However, the results illustrated
in Figure 2 show that test code only represents a small portion of
VR projects’ code and that current VR testing prevalence is far
from the ideal scenario for all three project types. This is especially
outlined through the median Method Count Ratios (MCR) of 0.04,
0.03, and 0.04 and Class Count Ratio (CCR) of 0.05, 0.06, and 0.02
for Independent, Organizational, and Academic Projects, respec-
tively. Indeed, these are significantly worse in comparison to other
categories of software projects, such as industrial Java projects,
analyzed by Klammer et al. [34], where the equivalent LOC ratio
was around 0.6 for the totality of the code-base, or C# projects by
Microsoft [35], where the LOC ratios were between 0.35 and 0.89.
Furthermore, an ANOVA analysis reveals that the P-values for MCR
and CCR were respectively 0.26 and 0.06, revealing no significant
statistical difference in the values of these metrics across project
categories.

4.2 RQ2: Effectiveness of VR Test Cases
As discussed within Section 3.2.3 using Unity to generate code
coverage reports for our project set has proven challenging, and
no other tool allows the generation of these reports. This high-
lights the lacking tool support in Unity for testing-related activities
and is the main reason why we opted to use Assertion Density to
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per Project Category (outliers removed)

approximate our project-set tests’ effectiveness. When consider-
ing the metric of Assertion density, illustrated within Figure 3 for
projects that had test cases, it is clear that these values are not very
encouraging. Indeed, the median values are 14.57% for Indepen-
dent projects. 17.46% for Organizational projects, and 14.74% for
Academic projects. These values are even lower than those found
within mobile applications [10], and they are linked with less effec-
tive testing practices [50]. In addition, the ANOVA analysis reveals
that the P-value for this metric is 0.56, indicating no substantial
difference across project categories. These results hint at a massive
need for testing support for all the different types of VR projects.
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4.3 RQ3: Design Quality of VR Test Cases
After evaluating the extensiveness and effectiveness of test cases
developed within our project set, we analyzed them to evaluate
their quality using the method outlined in Section 3.2.4, and we
obtained the following results:
Assertion Roulette(AR): It is clear within Figure 4 that the AR
smell is quite common within our set of VR projects. Indeed, 78%
of the projects across categories had assertion roulette in 20% or
more of their test cases, 18 of which were Independent projects, 19
of which were Organizational projects, and the rest were Academic
projects.

1 [ Un i tyTes t , Order ( 7 ) ]
2 pu b l i c IEnumera tor T e s t L i s t F e e d b a c k ( ) { . . .
3 As s e r t . I sNo tNu l l ( l i s t F e e d b a c kR e s . Feedback ) ;
4 As s e r t . I sT rue ( l i s t F e e d b a c kR e s . Feedback . Count >0 )

↪ ; . . . }

Listing 1: Assertion Roulette Smell from unity-sdk
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Figure 4: Summary of Detected Test Smells

Listing 1 is an example of anAssertion Roulette from the watson-
developer-cloud@unity-sdk project, where the test is attempt-
ing to verify whether the feedback object meets the developer’s
expectations. It would be difficult to diagnose the exact cause of this
test’s failures. For example, whether the feedback response is null,
or whether it’s empty, as no messages are given in the assertion
statements in lines 3 & 4.
Eager Test(ET): For the ET smell, represented within Figure 4, it
is clear that this smell is also common within our VR project set.
Indeed, we found that 23 projects have this smell within 20% or
more of their test cases, 12 of which were independent, 6 of which
were Organizational and the rest were Academic.

1 [ Te s t ]
2 pu b l i c vo id Coo rd ina t eSy s t emsTe s t ( ) { . . .
3 CubeUVCoordinates cubemap= c a r t e s i a n ;
4 As s e r t . I sT rue ( M i s c e l l a n e ou s . app rox ima t e l y ( c a r t e s i a n

↪ . da ta , cubemap . r e c o n v e r t e d _ c a r t e s i a n . d a t a ) , " . . . "
↪ ) ;

5 OctahedronUVCoord inates octahedron_map= c a r t e s i a n ;
6 As s e r t . I sT rue ( M i s c e l l a n e ou s . app rox ima t e l y ( c a r t e s i a n

↪ . da ta , octahedron_map . r e c o n v e r t e d _ c a r t e s i a n . d a t a
↪ ) , " . . . " ) ; }

Listing 2: Eager Test Smell from Planetaria

Listing 2 is an example of an Eager Test from mattrdowney@Plan
etaria, where the test is attempting to verify that the cubemap and
octahedron maps are storing and converting coordinates correctly
from their Cartesian form. However, it would be difficult to diagnose
which of these coordinate conversion processes is failing, since the
test would fail if either or both are problematic.
General Fixture(GF): The GF smell is quite widespread within
our project set, as illustrated within Figure 4, and was found in
10% or more tests of 17 projects. Out of these, nine projects were
Independent, four were Organizational, and the rest were Academic.

1 GameObject ob j ; VimeoRecorder r e c o r d e r ;
2 [ SetUp ]
3 pu b l i c vo id _Be fo r e ( ) { . . .
4 ob j = new GameObject ( ) ;
5 r e c o r d e r = ob j . AddComponent<VimeoRecorder > ( ) ; }
6 [ Te s t ]
7 pu b l i c vo id I n i t _ L o o k i n gG l a s s ( ) { . . .
8 a s s e t = GameObject . I n s t a n t i a t e ( . . . ) ;
9 As s e r t . AreEqual ( r e c o r d e r . r ende rTex tu r eTa rge t , n u l l )

↪ ; }

Listing 3: General Fixture Smell from vimeo-unity-sdk

Listing 3 represents a General Fixture smell within vimeo@vimeo-
unity-sdk, where the test is using the recorder object initialized
by the _Before() fixture, but not the obj object. This causes a non-
optimal memory consumption due to the initialization of an object
that’s not used by the test method. It may also make it more difficult
to evolve the test cases due to ambiguity related to determining
which objects are being used by the tests. For example, the test case
described above initializes and uses a new game object instead of
the one initialized by the game fixture.
Mystery Guest(MG): Unlike the aforementioned test smells, Mys-
tery Guest is less common within our project set, as shown by
the results within Figure 4. Indeed, seven projects had this smell
within 3.5% or more of their test cases. One of these projects was
Independent, two were Organizational and the rest were Academic.

Listing 4 represents aMystery Guest smell within Willychang21
@MapboxARGame. The issue this smell causes is that this test will
fail if it is run within an environment where the database is not
available, such as a CI environment or a different machine. This
smell goes against the recommendation of using a mock object to
programmatically represent an external resource during testing.

1 p r i v a t e SQLi teCache _cache ;
2 [ Te s t ]
3 pu b l i c vo id V e r i f yT i l e s F r omCon cu r r e n t I n s e r t ( ) {
4 As s e r t . AreEqual ( _ t i l e I d s . Count , _cache . T i l eCoun t (

↪ t i l e s e tName ) , " . . . " ) ; }

Listing 4: Mystery Guest Smell from MapboxARGame

Lazy Test (LT) and Sensitive Equality(SE): We did not discover
any examples of these smells through the use of our automatic
smell-detecting tool or the manual inspection used to verify its
accuracy. In the case of the SE smell, we found that most compar-
isons of objects within test cases were based on a specific object’s
property. Furthermore, based on the findings in Section 4.1, it’s
clear that the developers of the VR project-set write much less
test code than functional code, thus making it less likely that they
would write multiple tests for the same method, which in turn
causes the LT smell. The results we found regarding the ET smell
earlier within this section point to the opposite practice of testing
multiple functional code methods within the same test being the
more common practice.

We contextualized the overall test smell detection results from
VR projects by comparing them with those from a similar test smell
study of open-source Android applications by Peruma et al. [11]
While 58.46% of files analyzed in Android exhibited the Assertion
Roulette smell, an average of 41.43% of tests within VR projects
we analyzed possessed this smell. A similar trend is noted for the
other smells as well, where Eager Test was found in 38.68% of An-
droid projects’ tests; it was found on average within 19.52% of our
VR projects’ tests. This trend continues for General Fixture, which
was found within 11.67% of Android projects’ tests and within an
average of 11.72% of VR projects’ tests. For Lazy Test, Sensitive
Equality, and Mystery Guest smells, the three means were close
to 0% for VR projects, and respectively were 29.50%, 9.19%, and
11.65% within Android projects. Overall, both application types
show a comparable and problematic frequency of the different test
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smells. However, the situation in VR applications is considerably
worse, considering the lack of prevalence and effectiveness of its
testing overall. Delving into the different VR project categories, the
only test smell category for which we found a significant statistical
difference was Assertion roulette, with a P-value of 0.01. Indeed,
through Figure 4, it’s clear that Organizational and Independent
projects display AR more severely than their Academic counter-
parts. For the ET, GF, and MG smells, the p-values were respectively
0.42, 0.12, and 0.11, indicating that there is no statistical difference
across the various project categories for these smells. A similar
conclusion can be reached through observing in Figure 4; however,
it’s important to note that Independent and Academic projects dis-
play more variance in the frequencies of these smells. Overall, test
design quality is consistently problematic across different project
categories.

4.4 RQ4: Categories of VR Test Cases
To categorize the test types that are present within VR applications,
we followed the methodology discussed in Section 3.3 and carried
out a manual analysis of 370 test methods from 36 VR projects.
We divided all the test methods into 13 different main categories.
Some of these methods fall under multiple categories. Figure 5
represents the taxonomy that we have generated based on a parent-
child hierarchy. The numbers in each category indicate the number
of test cases we discovered from independent projects, organization
projects, academic projects, and the total number from all projects,
respectively. In the rest of this section, we discuss each of the
test categories as well as their sub-categories by giving detailed
definitions. We also present code examples to help avoid the bias of
definition descriptions, but these definitions can also be expanded
for usage in other VR frameworks.
4.4.1 GameObject Property Tests As explained within Section 2,
GameObject is the fundamental class for all entities defined in the
Unity framework. It can be used to represent characters, props,
environment, or other elements. This category focuses on assessing
Game Object properties such as active, tag, and static. In total, we
found 27 test cases in this category.
4.4.2 Audio/Video Tests validate audio and video playback func-
tionality, including the ability to play, pause and stop audio and
video clips. We found seven test methods that fall into this category.
4.4.3 Physics Tests verify the accuracy of three-dimensional de-
signs of one or more objects are evaluated by the Physics Test [51].
For a single target, they assess the properties and controls of the
physics simulation. For multiple targets, they examine the colli-
sion/colliding behaviors and the effects of different forces at specific
locations and times. The observed subcategories are:
Rigidbody and Character Tests. Both Rigidbody and Character
are control components used in VR physics simulation. Rigidbody
enables control of objects through the Unity physics engine [52]. It
allows interaction with physics-based movements, which include
forces, gravity, mass, and momentum. Rigidbody Property Tests are
concerned with physical behaviors such as movement and position.
Character Tests, on the other hand, concentrate on validating the
physical characteristics of a character, such as the names of their
body’s bones, skeleton size, etc. In total, we found two Rigidbody
Tests and three Character Tests.

Colliding Tests. Colliding in VR simulates non-physical effects
when multiple objects come into contact with each other. Colliding
tests mainly verify the application design logic. In total, we found
14 tests.

1 [ Un i t yTe s t ]
2 pu b l i c IEnumera tor Shou ldRe loca tePowerupWhenCol l id ing

↪ ( ) {
3 Vec to r3 pos = powerup . t r an s f o rm . p o s i t i o n ;
4 MakeP laye rCo l l i deWi th ( powerup ) ;
5 y i e l d r e t u r n new Wai tForSeconds ( Te s tCon s t an t s .

↪ WAIT_TIME ) ;
6 As s e r t . AreNotEqual ( powerup . t r an s f o rm . p o s i t i o n , pos ) ;
7 }

Listing 5: Colliding Test from jet-dash-vr

Listing 5 shows an example of a Colliding test from the project
iamtomhewitt@jet-dash-vr. This test evaluateswhether the powerup
object will be relocated after colliding. The test first records the
initial position to pos for powerup object in line 4. Then, it calls
the function MakePlayerCollideWith() to make the player object
contact with the powerup object in line 5. After waiting for a fixed
time for the system update, an assertion is inserted at line 7 to check
whether the new position is different from the initial position.
Collision Tests. Collision is very similar to colliding but with a real-
istic physical effect. The two terms are often used interchangeably
in VR apps. We separate them because of their different API usage
and consequences. Collision tests follow the three-stages-design:
before, during, and after collision. We identified six collision tests.
4.4.4 GUI Tests evaluate the layouts, input fields, and text of
the application’s interface to ensure that they work correctly. We
discovered that the scope of visual components in VR is beyond
traditional GUI widgets. Tests can encompass anything from a
simple toggle button to a fully immersive 3D environment. The
test target includes traditional GUI elements and VR-customized
immersive experiences. In total, we identified eight GUI tests.

1 [ Un i t yTe s t ]
2 pu b l i c IEnumera tor T e s tGa z eCu r s o rA r t i c u l a t e d ( ) {
3 As s e r t . I sT rue ( inpu tSys tem . GazeProv ide r . GazePo in t e r .

↪ I s I n t e r a c t i o n E n a b l e d , " Gaze cu r s o r shou ld be
↪ v i s i b l e a t s t a r t " ) ;

4 As s e r t . I s F a l s e ( inpu tSys tem . GazeProv ide r . GazePo in t e r .
↪ I s I n t e r a c t i o n E n a b l e d , " Gaze cu r s o r shou ld not
↪ be v i s i b l e when one a r t i c u l a t e d hand i s up " ) ;

5 }

Listing 6: GUI Test from MixedRealityToolkit-Unity

Listing 6 illustrates an example of a GUI test from the project
microsoft@MixedRealityToolkit-Unity in the file FocusProvide
rTests.cs. The goal of this test method is to check if the gaze cursor
behaves properly with articulated hand pointers. Line 4 checks if
the gaze cursor is visible before the interaction begins. Then, in
line 5, the assert statement is evaluating the invisibility of the gaze
cursor.
4.4.5 Animation Tests Animationmeans objects are in action. Tests
in this category verify the correctness of the movement function-
alities and properties of test targets. For example, their location
updates, properties of their movement, stopping, and rotation. The
test cases we observed all follow a time-order-oriented design,
where an assertion is inserted to compare the status of a test target
before and after system updates. Some tests also verify the target’s
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Figure 5: Taxonomy of VR Testing Categories (★ indicates a VR-attention category)

animation clips which refer to a sequence of animated movements.
In total, we identified four Animation Tests.
4.4.6 Network Tests Networking and multiplayer support are two
features in VR applications that require local or wide-area network
access. These tests check whether network calls and responses are
correct, such as response count and response data. They set the
connecting and receiving ports and ensure that the receiving end
is configured correctly and that data is transmitted between the
sender and the receiver without any issues. Six tests of this category
were found.
4.4.7 Graphics Tests assess how visually appealing VR applica-
tions are. The observed subcategories are:
Camera Property Tests. In Virtual Reality (VR) applications, de-
velopers often incorporate one or more cameras into the virtual
environment to offer users various perspectives of an immersive
experience. These test methods verify the rotation of the camera
on different axes within a given range, as well as the transitions
between the camera’s life cycle activities, such as when a camera
should be active or inactive in various modes. We identified two
camera tests in total.

Listing 7 shows an example of a Camera Property Test from
project stefaanvermassen@virtual-museum-app. This test eval-
uates whether the camera can rotate correctly along with the test
player. A first-person controller named player has been initialized
in line 3. Then in line 5, it is vertically rotated 50 degrees. Eventually,
an assertion in line 8 is evaluating whether the camera has rotated
with player to the correct position.

1 [ Te s t ]
2 pu b l i c vo id P l a y e rCh a r a c t e r _Ro t a t e _Ro t a t e d ( ) {
3 F i r s t P e r s o nC o n t r o l l e r p l a y e r = GameObject .

↪ F indObjec tOfType < F i r s t P e r s o nC o n t r o l l e r > ( ) ;
4 . . .
5 p l a y e r . R o t a t e V e r t i c a l ( 5 0 ) ;
6 . . .
7 cameraRot = camera . t r an s f o rm . l o c a l R o t a t i o n .

↪ eu l e rAng l e s ;
8 As s e r t . That ( cameraRot . x , I s . EqualTo ( 5 0 ) . Within

↪ ( 0 . 0 0 5 ) , " Camera shou ld reach t a r g e t r o t a t i o n
↪ o f 50 " ) ;

9 . . . }

Listing 7: Camera Property Test from virtual-museum-app

Rendering Tests. evaluate factors including texturing, lighting,
image effects, and color correctness to determine the quality and
accuracy of the visual representation of a Virtual Reality (VR) envi-
ronment. We found eight tests of this category.

1 [ Te s t ]
2 pu b l i c vo id Emi s s i onCo lo r ( ) {
3 us ing ( var t e x = D i s p o s a b l eOb j e c t . New( wrapper .

↪ Genera teToonL i t Image ( s e t t i n g ) ) )

4 us ing ( var main = D i s p o s a b l eOb j e c t . New( T e s t U t i l s .
↪ LoadUncompressedTexture ( " a lbedo_1024px_png . png "
↪ ) ) )

5 As s e r t . L e s s ( T e s t U t i l s . D i f f e r e n c e ( t e x . Ob jec t ,
↪ computed . Ob j e c t ) , 1e −4 ) ; }

Listing 8: Rendering Test from VRCQuestTools

Listing 8 shows an example of a Rendering test from project
kurotu@VRCQuestToolswith the purpose of evaluating color emis-
sion. In line 3, an image is generated by adjusting the settings of the
image. Then, in a main variable, a PNG image file is loaded. Finally,
in line 5, the assert statement calculates the average difference be-
tween two rendered textures which returns the pixel difference
between textures.
4.4.8 Asset Tests An asset is any item that the developer uses to
create the VR application. Assets include visual, audio, or other
elements like models and textures. An asset can either be external
as a file or internal as data from the editor. Asset Tests verify the
assets during the importing, loading, unloading, distributing, and
other processes. Correctly managing a large number of assets is
a demanding task for VR developers. We found eight tests of this
category.
4.4.9 Input Tests The Input system is one of the largest compo-
nents in VR applications. It serves as a bridge that connects the
user’s actions to the application’s response. Input tests evaluate the
accuracy and responsiveness of the VR application to user inputs,
ensuring that user actions are correctly interpreted into designated
responses. The two subcategories we observed are:
Layout and Control Tests. Besides the traditional user controls
such as clicking and swiping, VR application provides users with
more enhanced immersive input controls such as hands, eyes, and
body tracking. To support different types of VR devices, developers
design their app based on an internal control layout, which is later
mapped to a particular user’s device. Layout and Control tests
validate the correctness of the layout mapping and the controls that
bind to it. We found 31 tests in this subcategory.

1 [ Te s t ]
2 pu b l i c vo id ButtonsArePackedByTheByte ( ) {
3 runt ime . Repor tNewInputDevice (

↪ But tonPackedXRDev i ceS ta t e .
↪ Cr e a t eDev i c eDe s c r i p t i o n ( ) . ToJson ( ) ) ;

4 InputSys tem . Update ( ) ;
5 var l a you t = InputSys tem . LoadLayout ( " XRInputV1 : :

↪ XRManufacturer : : XRDevice " ) ;
6 As s e r t . That ( l ayou t , I s . Not . Nu l l ) ;
7 As s e r t . That ( l a y ou t . c o n t r o l s . Count , I s . EqualTo (

↪ kNumBaseHMDControls + 8 ) ) ;
8 var c u r r e n tCon t r o l = l a y ou t [ " But ton1 " ] ;
9 As s e r t . That ( c u r r e n tCon t r o l . o f f s e t , I s . EqualTo ( 0 ) ) ;
10 As s e r t . That ( c u r r e n tCon t r o l . l ayou t , I s . EqualTo ( new

↪ I n t e r n e d S t r i n g ( " But ton " ) ) ) ; }
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Listing 9: Layout and Control Test Unity-Technologies@InputSystem

Listing 9 shows an example of a Layout and Control Test. This test
case is checking if the button1 layout of a specific XRDevice from
a particular manufacturer can be successfully loaded and parsed by
the VR input system. In lines 3 and 4, the runtime system detects
new devices and updates input system. The entire layout is loaded
in lines 6-8. The “Button1“ from this layout is checked from line 10
to line 12.
Interaction Tests. evaluate the response of the whole system to
a complicated user input, such as a sequence of interactions. We
found four tests in this subcategory.

1 [ Un i t yTe s t ]
2 pu b l i c IEnumera tor T e s t Ey eT r a c k i n gTa r g e tMu l t i p l eT a r g e t s

↪ ( ) {
3 . . .
4 Ta rg e tOb j e c t 1 . AddComponent<EyeTrack ingTarge t > ( ) ;
5 Ta rg e tOb j e c t 2 . AddComponent<EyeTrack ingTarge t > ( ) ;
6 . . .
7 i n pu t S imu l a t i o n . EyeGazeS imu la t ion = EyeGaze .

↪ CameraForwardAxis ;
8 . . .
9 As s e r t . True ( EyeGazeProv ider . GazeTarge t ==

↪ Ta rg e tOb j e c t 1 ) ; }

Listing 10: Interaction Test from MixedRealityToolkit-Unity

Listing 10 shows an example of an Interaction Test. It aims
to check the correctness of the eye-tracking system’s response
to multiple target objects. From line 3 to line 6, this test creates
TargetObject1 and TargetObject2 and adds them to the eye-
tracking system. In line 7, eye gazing is simulated to be in the same
direction as the camera. Based on the design logic, TargetObject1
should be selected and passed to the assertion in line 9.
4.4.10 App Logic Tests are relevant to a specific VR application
based on its business logic and functionalities. A total of 236 tests
were found in this category. To provide a more complete under-
standing of the App Logic Test category, we divided it into seven
different sub-categories. (1) Event Tests: evaluate the correctness
of a response after triggering an event by using the event listener.
For example, testing whether the motion controller was interactive
by checking click events or examining the stage of the event life-
cycle. (2) Authentication Tests: ensure a correct data verification
using token error messages and token statuses. (3) Exception Tests:
check if a test method behaves as intended during the execution
of the program. (4) Configuration Tests: examine the environment
variables, sessions, and configurable properties of different objects
before evaluating the actual test method. (5) Others: tests that val-
idate utility functions and domain-specific logic of VR projects.
Utility functions often include common code and often-used meth-
ods. Domain logic is the underlying business logic of a specific VR
project. (6) I/O Tests: Test interaction with the local filesystem. (7)
Location Tests: verify the position values (e.g., longitude, latitude)
in a three-dimensional world.
4.4.11 Data Tests involve dataset evaluation through caching sys-
tems, local file systems, or other local and remote databases. These
tests confirm that a VR application is storing, retrieving, delet-
ing, and updating data appropriately. For example, testing whether
multiple objects can be added to a cache system concurrently. Play-
erPrefs, a built-in Unity API that helps developers quickly access

internal data between frames and across multiple VR scenes, is a
commonly-tested structure within these tests. In total, we identified
13 Data Tests.
4.4.12 Performance Tests are foundwithin traditional software [53]
as well as VR software. They can be used to evaluate the VR ap-
plications’ ability to handle complex interactions and high levels
of visual details in a correct and timely manner. For example, a
performance test can be validated by executing the same test on
different gamepads by measuring the state of gamepads after a fixed
interval. We observed five tests in total.

Listing 11 shows an example of a performance test from project
tterpi@VRSketchingGeometry. This test aims to validate the per-
formance of setting a large number of control points on a sketch
object in VRworld. The Measure.Method in line 4 is a measurement
API in Unity Performance Testing Extension.

1 [ Test , Per formance ]
2 pu b l i c vo id Sk e t c hOb j e c t _ S e tCon t r o l P o i n t s _P e r f o rman c e ( [

↪ Values ( 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 5 , 2 0 , 2 5 , 3 0 ,
↪ 40 , 5 0 ) ] i n t l e ng t h ) { L i s t <Vector3 >
↪ c o n t r o l P o i n t s = Gene r a t eCon t r o l P o i n t s ( l e ng t h ) ;

3 Measure . Method ( ( ) = >{ t h i s . L i n e Sk e t c hOb j e c t .
↪ S e tCon t r o l P o i n t s L o c a l S p a c e ( c o n t r o l P o i n t s ) ; } ) .
↪ Run ( ) ; }

Listing 11: Performance Test from tterpi@VRSketchingGeometry

4.4.13 Device Tests can be used to assess the compatibility and
functionality of VR hardware and software. This test is important
due to themarket’s wide range of VR devices, such as head-mounted
displays (HMDs), controllers, and mobile devices. We found 37 tests
in total.

1 [ Te s t ] [ Category ( " Dev i ce s " ) ]
2 pu b l i c vo id Devices_CanGetDescr ip torFromHID ( ) {
3 var d e v i c e = ( HID ) InputSys tem . d e v i c e s . F i r s t ( x => x

↪ i s HID ) ;
4 As s e r t . That ( d e v i c e . h i dD e s c r i p t o r . p roduc t I d , I s .

↪ EqualTo ( 1 2 3 4 ) ) ;
5 As s e r t . That ( d e v i c e . h i dD e s c r i p t o r . vendor Id , I s .

↪ EqualTo ( 5 6 7 8 ) ) ;
6 As s e r t . That ( d e v i c e . h i dD e s c r i p t o r . e l emen t s . Length ,

↪ I s . EqualTo ( 1 ) ) ;
7 }

Listing 12: Device Test from Unity-Technologies@InputSystem

Listing 12 shows an example of a device test from project Unity-Te
chnologies@InputSystem. In line 5, the first device value from the
list of devices is stored. Then in lines 6-8, assertion statements check
the device’s product id, vendor id, and the number of connected
device are checked. Here, the device is GenericDesktop only, that’s
why element.length is equal to 1.

Overall, we generated a VR Testing taxonomy of 13 main cat-
egories and 14 subcategories. We believe that this generated tax-
onomy provides a comprehensive overview for VR developers and
testers, enabling them to identify potential areas and aspects of test-
ing that may have been overlooked in their projects. Additionally,
this taxonomy expands the knowledge of VR researchers, providing
them with insight into different research directions they can pursue.
This taxonomy is especially important due to the apparent lack
of established VR testing practices, as well as the several issues
noted with testing prevalence, effectiveness, and quality, as found
within Sections 4.1 to 4.3, which is concerning since modern VR
headsets and their applications have been around since 2016 [54].
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While building the final taxonomy, we primarily relied on the
Unity documentation and our own Virtual Reality expertise. How-
ever, the Unity platform caters to both VR and non-VR applications,
and many test designs and APIs overlap, particularly when it comes
to a 3Dworld. Consequently, most of the categories in the taxonomy
are relevant for testing in both VR and non-VR applications.

To assist VR developers in their test design, we have identified
the test categories that require VR customization. We define a VR-
attention test as a test that involves VR devices and VR experience,
which are less likely to appear in non-VR applications. Categories
that have one or more VR-attention tests are labeled as VR-attention
categories.

Out of the 13 categories in Figure 5, we found four to be VR-
attention categories: GUI Test, Input Test, Performance Test, and
Device Test. While these categories are typical of traditional soft-
ware and are not unique to VR applications, we recommend that VR
developers consider VR-context adaptation when designing these
tests. For instance, they may need to design an input event that
simulates eye gazing or to evaluate their project’s connection with
an HMD device.

In GUI Test, were observed VR-attention test cases that focus on
the VR experience. For example, one test method creates a sequence
of hand movements to simulate actions like touch, and scrolling
and evaluate the correctness of designated GUI effects. In the In-
put Test, the observed VR-attention test cases focus on both VR
experience and VR devices. For example, one test method in Layout
and Control Test focuses on validating the control layout load from
the XR devices of certain manufacturers, and another test method
in Interaction Test focuses on validating how eye-tracking system
could capture the target object with other disturbing objects. In
Performance Tests, the observed VR-attention test cases focus on
the scalability of the VR experience. The tested app is a VR sketcher,
which allows users to draw 3D lines and shapes. Users can freely
twist and drag 3D lines by adding control points. The performance
test evaluates the app’s ability to handle a large number of con-
trol points. In Device Tests, the observed VR-attention test cases
mainly focus on VR devices. For example, one test method validates
whether a VR hardware device can be automatically configured by
pre-defined identities.

5 Threats to Validity
On construct validity, the main threat is the soundness of the au-
tomatic analysis results. To measure the design quality of the test
cases, we followed the work of De Bleser et al. [28] and selected
six test smell types, including Assertion Roulette, General Fixture,
Sensitive Equality, Eager Test, Lazy Test, and Mystery Guest. To
further validate the automated reports, we followed a procedure
detailed within 3.2.5 which resulted in a 91.98% F-1 score. Hence,
we believe our automatic analysis results correctly represent the
quality of VR test cases.

On internal validity, one threat is the usage of Assertion Density
to estimate the effectiveness of VR tests, as there is no prior usage of
this metric in the context of VR software. However, this metric was
used in the context of Mobile Applications [10], C# software [27],
and OSS Java projects [37], proving the versatility of this metric
across several types of software as a proxy for test effectiveness,
hence our adoption of it. Another threat is potential bias when

answering RQ4. Since there is no existing taxonomy to use as a
reference, three co-authors reviewed and categorized randomly-
selected VR test methods separately. Then, the co-authors carried
out voting and discussion to finalize the results. In addition, when
defining the VR test taxonomy, this work uses a general language
and adds code examples to reduce the gap between the theoret-
ical concept and the observed practice. Furthermore, in order to
further validate that none of the testing types described by Al-
baghajati et al. [32] were missed by the random selection process,
two co-authors manually verified the documentations and source
codes of the 61 VR projects with tests and found no examples of
them. In addition, simple random selection was used to determine
which tests were manually categorized by the co-authors, as no
optimal stratification criteria emerged to perform stratified random
sampling.

On external validity, the main concern is the representativeness
of studied projects. Our empirical study consisted of 314 open-
source Unity VR projects from Github, 97 of which were originally
collected by Nusrat et al. [21]. These projects have been carefully
selected with at least 100 commits per-project, and are of varying
sizes, ages, and commit-frequencies. Furthermore, we considered
both small-scale projects and large projects backed by companies.
This allows us to uncover insight that may reflect the general char-
acteristics of all VR applications. Moreover, the taxonomies defined
in RQ4 do not depend on Unity alone and can be extended to more
general scenarios.

6 Related Works
6.1 Study on Automatic Software Testing
Software testing is an essential but costly and effort-intensive activ-
ity of software development, which pushed the research community
to study software testing practices. Greiler et al. [7] conducted a
qualitative study where they interviewed 25 practitioners about
how they test Eclipse plugins. They identified that unit testing plays
a critical role, whereas integration problems are identified by the
community. Kochhar et al. [8] performed a study on 20,000 non-
trivial software projects and explored the correlation of test cases
considering various factors. The study discovered that as projects
grow in size, their ratio of test cases per LOC decreases. Pecorelli et
al. [10] performed an empirical study targeting 1780 open-source
Android apps and identified that the effectiveness of their test cases
is low and that they suffer from quality issues. Several other stud-
ies [13–17] also performed empirical analyses of software testing
practices and different aspects of testing adoption. Even though
these works performed empirical analysis on general-purpose and
Android app testing practices, none of the work performed an anal-
ysis on testing practices of VR applications.

6.2 Study on Game and VR Testing
As Game and Virtual Reality (VR) applications are becoming more
popular and accessible, the research community has started study-
ing the development practices of Game and VR projects. To identify
common bugs in Game applications, Truelove et al. [55] performed
empirical analysis on 12,122 bug fixes from 723 updates of 30 pop-
ular games. Politowski et al. [56] performed a survey to under-
stand existing testing practices within Game development. Nusrat
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et al. [21] performed a study on 100 Unity VR applications and
created a performance bugs taxonomy in the context of VR. Bier-
baum et al. [57] examined existing testing techniques and their
applicability to VR interfaces, and suggested new practices for their
shortcomings. More recently, Harms [58] suggested an automatic
VR-usability evaluation method, and Wang [59] proposed a testing
framework that automates VR-scene testing. In addition, Ashtari
et al. [18] interviewed 21 AR/VR creators from different groups
such as hobbyists, domain experts, and professional designers, and
concluded pointed out that testing VR applications is a compli-
cated task, and Vlahovic et al. [60] described different factors and
dimensions that influence the Quality of Experience of VR applica-
tions, and presented options and recommendations for their future
research.

Although there are several works related to VR and Game de-
velopment, as well as a few works concerning VR software testing
and evaluation, none of them analyzed VR-testing’s adoption, prac-
tices, design issues and characteristics by analyzing existing code
bases. In this work, we tried to fill this knowledge gap by analyzing
existing projects and their testing practices.

7 Implications
Our analysis pointed out some critical factors and observations for
VR application testing which can be beneficial for VR developers,
tool builders, and researchers. The findings of this paper lead to the
following implications.
For VR Developers: RQ1, RQ2, and RQ3 clearly point out that VR
testing’s effort and effectiveness are low and that it suffers from
quality issues. These results illustrate the problematic state of test-
ing within VR applications, and that VR developers and testers
should put more effort into improving the quantity, coverage, and
quality of their tests. In addition, RQ4 generates a VR test case taxon-
omy based on testing goals, which can be helpful for VR developers
as a general guideline that directs the formulation of their test cases.
For VR Tool Builders: RQ2 points out the necessity of tool sup-
port for VR application code coverage analysis. Even though Unity
provides tool support for code coverage measurement, the tool is
unusable in a lot of cases due to compatibility issues. Similarly,
based on findings from RQ3, tool developers should develop tool
support for the automatic detection and repair of test smells for VR
applications.
For Software Engineering Researchers: From RQ1 & RQ2, it is
evident that VR application testing is not sufficient. Researchers
can do further studies on barriers to VR application testing and
formulate techniques to overcome them. Moreover, RQ3 clearly
identifies some of the test smells in VR test code. These smell cate-
gories are derived from traditional software test smells. Since VR
applications are different from traditional software, researchers can
investigate the existence of VR-specific test smells such as render-
ing smells, GameObject configuration smells, etc. Finally, through
RQ4, we identified some common categories of test cases developed
for VR applications. Such categorization can be a basis for future
research on pattern-based automatic test case generation for VR
applications.

8 Conclusion
In this paper, we conducted the first quantitative and qualitative
study on existing test practices of VR projects. We developed the
first tool for test effectiveness analysis and test-smell identification
for Unity-based projects. Moreover, we manually explored the char-
acteristics of VR test cases and categorized them. Our automatic
analysis shows low adoption of testing by VR applications, and that
their test practices are less efficient and have a lower design quality.
Furthermore, our manual analysis resulted in a VR test taxonomy
composed of 13 main categories, which reflect the characteristics
and specificities of VR applications, along with the identification of
VR-attention test categories. We hope that our findings on testing
practices in VR applications will allow future researchers to deter-
mine VR testing challenges and inspire future research on VR test
automation.
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