
An Empirical Study of High Performance
Computing (HPC) Performance Bugs

Md Abul Kalam Azad∗, Nafees Iqbal∗, Foyzul Hassan, Probir Roy
Department of Computer and Information Science, University of Michigan - Dearborn

Michigan, USA
{akazad, nafees, foyzul, probirr}@umich.edu

Abstract—Performance efficiency and scalability are the major
design goals for high performance computing (HPC) applications.
However, it is challenging to achieve high efficiency and scalabil-
ity for such applications due to complex underlying hardware
architecture, inefficient algorithm implementation, suboptimal
code generation by the compilers, inefficient parallelization, and
so on. As a result, the HPC community spends a significant
effort detecting and fixing the performance bugs frequently
appearing in scientific applications. However, it is important
to accumulate the experience to guide the scientific software
engineering community to write performance-efficient code.

In this paper, we investigate open-source HPC applications to
categorize the performance bugs and their fixes and measure
the programmer’s effort and experience to fix them. For this
purpose, we first perform a large-scale empirical analysis on 1729
HPC performance commits collected from 23 real-world projects.
Through our manual analysis, we identify 186 performance
issues from these projects. Furthermore, we study the root cause
of these performance issues and generate a performance bug
taxonomy for HPC applications. Our analysis identifies that
inefficient algorithm implementation (39.3%), inefficient code
for target micro-architecture (31.2%), and missing parallelism
and inefficient parallelization (14.5%) are the top three most
prevalent categories of performance issues for HPC applications.
Additionally, to understand how the performance bugs are fixed,
we analyze the performance fix commits and categorize them into
eight performance fix types. We further measure the developer’s
efforts and expertise required to fix performance bugs. The
analysis identified that performance bug fixes are complicated
with a median patch size (LOC) of 35 lines and are mostly fixed
by experienced developers.

Index Terms—Empirical Study, HPC, Performance Bugs, Per-
formance Optimization

I. INTRODUCTION

High performance computing (HPC) enables the scientific
and engineering community to solve large-scale computational
problems. These computational problems have a wide range
of applications, such as climate modeling and forecasting [1],
cancer research [2], drug discovery [3], nuclear energy [4], na-
tional security [5], automotive design [6] and so on. However,
unlike other applications, HPC applications require processing
a large volume of data and solving complex computational
problems at high speed. For this purpose, the HPC applications
execute the computational problems on massively parallel
architectures. However, writing a performance-efficient and
scalable HPC application is a challenging task.

*Equal contribution.

One of the challenges in writing an efficient HPC applica-
tion arises due to complex underlying hardware architecture.
HPC applications are targeted to run on multi-core CPU
architectures, GPUs, and related accelerators. However, these
micro-architectures have complex memory, and execution
model [7]. Inefficient implementation of computational kernels
for the target micro-architecture incur significant performance
overhead [8]. Additionally, compilers often generate sub-
optimal code resulting in low performance [9]. Unnecessary
and redundant computation is another source of inefficiency
found in HPC applications [10]. As a result, the developers put
significant effort into identifying and fixing the performance
bugs in the HPC applications. Nevertheless, it is important to
accumulate the lessons learned in fixing the performance bugs,
inform the HPC developers about the common performance
pitfalls, and further guide the software engineering researcher
to develop novel tool support.

Previously, many empirical studies were conducted in var-
ious domains to understand the fundamental root causes of
performance bugs [11]–[13] and how developers dealt with
them [14]. However, to the best of our knowledge, no empirical
study on HPC performance bugs has been undertaken, even
though it is crucial for overall software quality in the HPC
domain.

In this paper, we perform an empirical study of HPC perfor-
mance commits to bridge the knowledge gap between the HPC
application developer and the real-world HPC performance
bugs. Apart from that, we also analyzed how complicated
HPC performance bugs are to fix, as well as the developers’
experience to fix the performance bugs. In particular, we aim
to answer the following research questions:

• RQ1 (Causes of inefficiency): What are the common
types of performance bugs in HPC applications?

• RQ2 (Optimizing performance): How are performance
bugs optimized in the context of HPC applications?

• RQ3 (Bug fixing effort): How difficult it is to fix
performance bugs in HPC applications?

• RQ4 (Developer’s expertise): Does domain expertise
play a role to fix performance inefficiency? How skilled
are the HPC application developers to solve performance
bugs?

However, conducting an empirical investigation on the per-
formance issues of HPC applications based on commit activity

poses significant challenges. First, the performance commits
often lack adequate information to identify the root cause
of performance bugs. Second, performance commits often
involve multiple bug fixes in a large number of source files.
As a result, it becomes challenging to identify the root cause
of the bug and characterize the performance fixes.

In this study, we first carefully select 23 open-source HPC
projects with more than 1000 commits and 20 stars. Through
repository mining on these selected projects, we identified
1729 probable performance commits. To filter false-positive,
we perform a manual analysis and determine 186 performance
commits. We then manually investigate each performance
commit to answer the above-mentioned research questions.

By answering the above questions, we aim to understand
common characteristics of performance bugs in HPC applica-
tions. From our analysis, we identified that HPC performance
bugs, such as performance portability, inefficient compiler-
generated code, and so on, are nontrivial and require a good
understanding of underlying architecture, compiler optimiza-
tion, programming language, and the algorithm of the com-
putational kernel. Based on our analysis, we created an HPC
performance bug taxonomy with 10 main categories of perfor-
mance bugs. Besides the performance bug understanding, our
finding also comes up with a performance optimization catalog
that can assist developers in fixing the performance bug more
effectively and efficiently. Finally, our analysis also pointed
out that HPC performance bugs require more complicated
solutions and developer experience. The finding constitutes
a call for action for scientific application developers and
researchers to develop performance analysis tools to detect
inefficiencies, a recommendation system for the developers for
optimization, and automatic generation of performance fixes.

In summary, our study makes the following contributions:
• We construct a data set of HPC performance inefficiencies

that we used for our analysis. The dataset can be further
utilized in future research on developing tools and tech-
niques for detecting and fixing HPC performance bugs.

• We developed a taxonomy of HPC performance bugs or
inefficiencies1 that can assist developers in being aware
of such inefficiencies.

• Our performance optimization catalog can be utilized by
developers as a guideline as well as to help researchers
generate recommendation systems to fix performance
issues.

• Finally, our analysis of HPC performance bug fix com-
plexity and developer experience will help us understand
the characteristics of HPC performance bugs and provide
guidance to develop advanced tools for automatic detec-
tion and fixing performance bugs.

The remainder of this paper is organized as follows: Sec-
tion II describes the data preparation process and research
methodology of our empirical study. A comprehensive eval-
uation of all four research questions is presented in Sec-

1The terms performance inefficiency and performance bugs are used interchangeably
throughout this paper.

tion III, IV, V, and VI, respectively. Section VII, captures
any threats to the validity of our study. Section VIII discusses
the research findings. Finally, Section IX includes the related
works to our study, and Section X draws a conclusion for this
paper.

Replication: Our replication package is available at https:
//figshare.com/s/00c24aae3177e45db7ab for further study.

II. METHODOLOGY

This section explains how we prepare the dataset for HPC
applications and examine the performance bugs to understand
the root causes of performance bugs and classify them into
the appropriate category. Figure 1 shows the overview of our
research approach.

RQ1: Causes of

performance

inefficiencies

RQ2: Optimization

of performance

problems

HPC Project

Repo

Count: 23

Commit Msg Keyword

Search Using JGit

Potential Performance

Commit

Count: 1729

Manual Analysis

of Commits

Confirmed

Performance Commit

Count: 186

RQ3: Bug fixing

effort

RQ4:Developer’s

Expertise

Fig. 1. Overview of Research Approach

A. Dataset Preparation

Since our study focuses on HPC applications, which is a
broad domain, it was not practical to analyze all the open-
source HPC applications. Therefore, we at first manually cu-
rated a list of open source HPC projects developed by national
labs (LLNL, ORNL, NERSC), the Department of Defence, and
academia. We then filtered the popular projects based on stars.
We labeled the projects into scientific computing domains such
as Molecular Dynamics, Linear Algebra, Finite Element and
Monte Carlo simulations, Machine Learning, Programming
Models, etc. We selected those applications that have more
than 1000 commit counts and 20 stars in their respective
repositories. Due to time limitations, we chose a subset (23)
of the projects to study in detail. The list of the applications
is shown in Table I. These applications have existed for many
years and are well-maintained, indicated by commit count and
their popularity indicated by star count. Also, We consider a
wide range of domains (4th column in the table) to improve
coverage.

B. Collecting candidate performance commits

To study the performance bugs and their fixes, we au-
tomatically mine performance-related commits from our cu-
rated list of HPC repositories by using a tool built upon
JGit [38]. To identify performance-related commits, we
adopt a keyword-based searching approach similar to prior
work [11] [39] [40] [41]. Specifically, our tool returns all
the GitHub commits from these repositories that contain a
performance-related keyword (performance, speed up, accel-
erate, fast, efficient, optimize, etc.) in their title or description.

https://figshare.com/s/00c24aae3177e45db7ab
https://figshare.com/s/00c24aae3177e45db7ab

TABLE I
SUMMARY OF THE HPC APPLICATION DATASET USED IN THE STUDY

Project # Commits # Stars Domain
mlpack [15] 28,204 4174 Machine Learning

LAMMPS [16] 31,659 1553 Molecular Dynamics
OpenBLAS [17] 6,600 4932 Linear Algebra

CGAL [18] 101,678 3580 Computational Geometry
FFTW3 [19] 3,138 2261 Fourier Transformation

ArrayFire [20] 5,841 3996 Tensor Library
OpenFOAM [21] 6,102 1032 Comp. Fluid Dynamics
OpenMM [22] 6,873 1099 Molecular Simulation
MFEM [23] 16,204 1097 Finite Element Methods
Kokkos [24] 9,825 1203 Programming Model

GROMACS [25] 21,256 486 Molecular Dynamics
CasADi [26] 13,882 1118 Nonlinear Optimization
libMesh [27] 22,770 543 Finite Element Library
TileDB [28] 3,739 1438 Multi Dimensional Array

QMCPACK [29] 23,785 217 Quantum Monte Carlo
preCICE [30] 4,386 493 Multi-Physics Simulator
HYPRE [31] 12,061 443 Linear Algebra

lattice-QUDA [32] 12,106 224 Quantum Chromodynamics
Ginkgo [33] 5,431 261 Linear Algebra

GlobalArrays [34] 5,224 80 Programming Model
GOMC [35] 2890 46 Molecular Dynamics
Qbox [36] 1,851 31 Molecular Dynamics

Elemental [37] 3,773 490 Linear Algebra

This keyword-based filtering resulted in only selecting 1729
candidates of performance-related commits. To filter out false
positives from these candidate commits, we performed a
manual analysis explained in the following subsection.

C. Manual analysis of performance commits

Similar to prior studies [11], [12], [40], [42], [43], we man-
ually categorize HPC performance bugs by their root causes.
Specifically, we performed an iterative manual analysis to
analyze and categorize the HPC performance bugs that lasted
over seven months. Overall, we invested over 1900 man-hours
in manually examining the potential performance commits,
and extracting detailed information about these performance
issues and optimizations to obtain the initial taxonomy. The
iterations are as follows:

Iteration I: First, all four authors analyzed the 1729 candi-
date commits separately to identify whether the commit was
performance-related. For this purpose, the authors evaluated
the commit messages, bug patches, developer’s comments,
and pull request discussion to find any references to per-
formance improvement; and tagged them as performance or
non-performance. However, from the source code history, it
is difficult to differentiate whether it is an actual performance
bug or incremental implementation and improvement. While
doing manual analysis, we eliminated commits with more
than 20 source file changes to avoid the risk of adding noise
to the labeled data. These commits can be characterized as
tangled commits [44], which makes it difficult to determine
the true objective of the code. Moreover, prior work identifies
89% of the bugs can be localized with 20 files [45]. Several
other SE researchers adopted this heuristic either in empirical
studies on bugs [46] or bug prediction [47]. We follow the
heuristic to limit the cognitive overload of manual analysis
and tangled commits. To finalize this initial iteration, we had
a consensual agreement meeting among all authors to further
discuss the process and resolve conflicts. With this iteration,

we confirmed 186 performance bugs, similar in size to other
existing studies [11], [40] that required manual inspection.

Iteration II: We further independently reviewed, analyzed,
and labeled each of the 186 identified performance bugs
based on the root cause of those bugs. To obtain a mean-
ingful domain-specific taxonomy, we consider the construct
of underlying microprocessor architecture (CPU vs. GPU),
memory subsystem (Cache vs. global memory vs. register),
aspects of parallel and concurrent computing, parallel pro-
gramming models (OpenMP, CUDA, Kokkos), and compiler
optimization techniques. We performed evidence-based anal-
ysis to determine the root cause of a performance bug. We
evaluated the commit message, developer’s comments, and
pull request discussion of a commit to find any references
to performance bugs. We further went through the related
white literature (scientific publications) and gray literature
(tutorials, developers guide) to understand the nature of the
performance bugs. It is to be noted that gray literature is
accepted in the SE community [48], especially for emerging
technologies. For instance, the GROMACS-8aa14d1 commit’s
message mentions that for reduction operation it prefers shared
memory over global memory in GPU. To understand the root
cause, all the authors study the memory architecture of the
Nvidia GPU and the best practice guide [49]. Since the global
memory has more access latency than shared memory, we
identify the root cause of this performance inefficiency as
inefficient GPU memory access.

In the end of this iteration, we again had a reconciliation
meeting to discuss the differences. For cases of disagreement,
we performed evidence-based discussion mentioned above on
the root causes and finally, we decided based on voting.
Following an in-depth inspection and discussion, we agreed
on a common label for each of the 186 performance bugs.

For both iterations, we calculated the Fleiss’ kappa value be-
tween the observations of the authors for measuring inter-rater
agreement. The score for classifying the commits into per-
formance or non-performance categories is 0.64. The Fleiss’
kappa value on root-cause classification is 0.72. Both val-
ues show substantial agreement (0.61-0.80:implies substantial
agreement) on performance bug detection and categorization.

III. RQ1: CAUSES OF INEFFICIENCY

We studied 186 performance commits from 23 open-source
HPC projects and categorized them into 10 major categories.
Figure 2 shows the detailed taxonomy of the HPC performance
inefficiencies. In the rest of the section, we discuss each
category of inefficiency and its root causes.

A. Inefficient algorithm, data structure, computational kernel,
and their implementation (IAD)

We found that 73 out of 186 commits (39.3%) fix the
performance issues that originated from the poor algorithm
and data structure design and implementation. These ineffi-
ciencies include using computationally expensive operations
(29), redundant operations (16), unnecessary operations (13),

https://github.com/gromacs/gromacs/commit/8aa14d1

HPC performance bugs (186)

Missing

Parallelism (12)
Inefficient

parallelization (15)

Micro-
architectural (58)I/O (2)

Algorithm /data-
structure (73)

Communication
overhead (2)

Memory

management (13)
Logical error (3)

Missed compiler

optimization (9)
Data locality

(36)

Concurrency
control (7)

Compiler

regression (1)

Vector

parallelism (5)

GPU
parallelism (2)

Instruction level
parallelism (1)

Task
parallelism (4)

Unnecessary
operation (13)

Redundant
operation (16)

Expensive
operation (29)

Frequent
function call (3)

Inefficient data-
structure (9)

Improper data
type (3)

Memory leak (5)
Repeated memory

allocation (4)
Misc. (4)

Small parallel
region (5)

Inefficient thread

mapping (6)

Under-
parallelization (2)

Over-
parallelization (2)

Cache locality (18) GPU memory (18)

Misc. (13)

HPC performance bugs (186)

Missing

Parallelism (12)
Inefficient

parallelization (15)

Micro-
architectural (58)I/O (2)

Algorithm /data-
structure (73)

Communication
overhead (2)

Memory

management (13)
Logical error (3)

Missed compiler

optimization (9)
Data locality

(36)

Concurrency
control (7)

Compiler

regression (1)

Vector

parallelism (5)

GPU
parallelism (2)

Instruction level
parallelism (1)

Task
parallelism (4)

Unnecessary
operation (13)

Redundant
operation (16)

Expensive
operation (29)

Frequent
function call (3)

Inefficient data-
structure (9)

Improper data
type (3)

Memory leak (5)
Repeated memory

allocation (4)
Misc. (4)

Small parallel
region (5)

Inefficient thread

mapping (6)

Under-
parallelization (2)

Over-
parallelization (2)

Cache locality (18) GPU memory (18)

Misc. (13)

Fig. 2. Taxonomy of HPC Performance Bugs

use of inefficient data structure (9), repeated function calls (3),
and use of improper data types (3).

1) Computationally expensive operation: Applications with
this inefficiency pattern perform a set of operations that incurs
high-computational overhead at the runtime. Some sources of
these expensive operations include using an inefficient algo-
rithm or computational kernel, expensive runtime evaluation
instead of compile-time evaluation, expensive data-structure
traversals, and higher-precision arithmetic operations. How-
ever, from the commits, we observe that this computational
overhead can be bypassed on many occasions using tech-
niques such as compile-time evaluation, algorithmic strength
reduction or approximation, caching, and reduced precision
arithmetic.

1 void bilateralKernel(
2 ...

3 -gauss2d[ly*window_size+lx] = exp(((x*x) + (y*y))

4 - /(-2.f * variance_space));

5 +gauss2d[ly*window_size+lx] = __expf(((x*x) + (y*y))

6 + / variance_space);

Listing 1. CUDA’s exp() function is computationally expensive than __expf().

For instance, the Listing 1 depicts the partial commit,
ArrayFire-d0d87ab from ArrayFire. According to the commit,
ArrayFire’s bilateral filter kernel uses CUDA’s [50] expo-
nential function exp(). The exp() implements a double
precision exponential function which is computationally ex-
pensive. On the other hand, CUDA implements a less compu-
tationally expensive alternative, __expf(), with fewer native
instructions. However, __expf() suffers from accuracy loss
compared to exp(). Since the algorithm can tolerate the loss
of accuracy, using computationally expensive exp() instead
of __expf() is causing performance inefficiency.

2) Redundant operations: This category of inefficiencies
arises due to the iterative execution of an operation while the
operation itself is invariant of the iteration, making iterative
execution redundant. MFEM-2c9ee23 commit of MFEM re-
ports such inefficiency. Listing 2 depicts the relevant changes
of the commit. According to the commit, the MFEM’s
MultTranspose function performs a multiplication of a
dense matrix loc_prol with vectors and transposed in a

hot loop via the MultTranspose function call. However,
matrix loc_prol does not change over the iteration. As a
result, based on the multiplication property of transpose, the
transpose operation on each iteration is redundant and can be
carried out outside the loop.

1 void OrderTransferOperator::MultTranspose(const Vector &x,
↪→ Vector &y) const

2 ...

3 -subY.SetSize(loc_prol.Width());

4 +loc_prol.Transpose();

5 +subY.SetSize(loc_prol.Height());
6 ...
7 for (int vd = 0; vd < vdim; vd++){
8 ...

9 - loc_prol.MultTranspose(subX, subY);

10 + loc_prol.Mult(subX, subY);

Listing 2. Redundant transpose operation in loop.

3) Unnecessary operations: In such cases, the ineffi-
cient code performs a computation or data access whose
results were never used in the algorithm. For instance,
OpenFOAM-dev-91e84b9 commit identifies such inefficiency.
The Listing 3 depicts the partial commit where OpenFOAM-
dev’s stochasticCollision algorithm checks whether
all parcels collide regardless of their associativity to cells.
However, since parcels belonging to different cells will never
collide, many collision checks are unnecessary, resulting in
poor performance of the algorithm.

1 void Foam::ORourkeCollision<CloudType>::collide(const
↪→ scalar dt)

2 -forAllIter(typename CloudType,this->owner(),iter1){

3 - forAllIter(typename CloudType,this->owner(),iter2)

4 +// Create a list of parcels in each cell

5 +List<DynamicList<parcelType*>> pInCell(this->owner().mesh
↪→ ().nCells());

6 + // iterate the cell list

7 + for (label celli=0;celli<this->owner().mesh().nCells()
↪→ ; celli++){

8 + // compare parcels within the cell

9 + forAll(pInCell[celli], i){

10 + for (label j=i+1; j<pInCell[celli].size(); j++)
↪→ {

11 bool massChanged = collideParcels(dt, p1, p2, m1
↪→ , m2);

Listing 3. Unnecessary traversal in collision detection

https://github.com/arrayfire/arrayfire/commit/d0d87ab
https://github.com/mfem/mfem/commit/2c9ee23
https://github.com/OpenFOAM/OpenFOAM-dev/commit/91e84b9

4) Inefficient data-structure: We found that 7 out of 9
commits of this category fix performance bugs originating
from choosing an inefficient data structure library. For in-
stance, TileDB-d51b082 commit reported that the read query
implemented using forward_list from C++’s Standard
Template Library (STL) [51] is performing slower. The
forward_list implements a linked list data structure. As
a result, traversing forward_list results in a poor data
locality compared to other cache-efficient data structures such
as STL’s vector.

B. Inefficient code for underlying micro-architecture (MA)

We found 58 commits (31.8%) to fix the performance bugs
that originated from inefficient code for underlying hardware
micro-architecture. High-performance computing application’s
performance is susceptible to memory access latency, hazards
in the instruction pipeline, branch divergence, and many other
micro-architectural nuances.

1) Inefficiency due to memory/data locality: The princi-
ple of locality heavily influences modern processors design
choices. According to the principle, applications tend to access
a small set of data repeatedly. Modern processors implement
hierarchical data storage to reduce memory latency of these
frequently accessed data. Register memory, the fastest data
storage, resides next to the processor. The processors im-
plement a limited number of registers. As a result, efficient
utilization of the registers is important for high performance.
Cache memories residing next to registers can contain more
data at a relatively higher access latency than the registers.
Again, processors implement multi-level cache, where data
access from the far-caches incurs higher latency. Modern
GPU architectures further implement various types of cache-
memory targeting application’s memory access patterns. Due
to the complexity of the memory hierarchy of modern pro-
cessors, it is often challenging to write efficient code. Our
empirical study finds 36 commits (19.4%) that fix these various
memory/data locality challenges.

a) Inefficient cache access: We found 18 commits fix
inefficiencies arise due to poor cache utilization resulting in
high memory access latency.

One such example is false sharing. False sharing occurs
when two or more threads run on two or more CPU cores and
access two different memory addresses in the same cache line.
Such access causes cache line eviction from one CPU core and
vice versa and increases cache miss. For example, the Kokkos-
75fd8bc commit reported a false sharing in it’s random number
pools which are shared by multiple threads. Since the array of
elements per thread is small, they share cache line and causes
false-sharing. The commit fixes the issue by padding the array
so that elements in the array reside in the separate cache line.
The commit reported 200x improvement for 20 threads on the
Intel Skylake machine running the random number test case.

Another example of such inefficiency is non-linear data
access that causes poor spatial locality. Spatial locality, a
kind of data locality, states that given data access, nearby
memory locations will be referenced soon. To realize the

property, a cache-line, the basic building block of a cache,
holds consecutive memory addresses. Any high-performance
application traverses memory non-linearly will fail to utilize
the cache-line locality and incur significant memory latency.
For instance, the cp2k-7b34ac6 commit identifies that cp2k‘s
Gamma_P_ia had poor spatial locality due to its access
pattern.

b) Inefficient GPU-memory access: Modern GPU pro-
cessors implement multiple device memory spaces such as
global, local, shared, constant, texture memory, and register
files [7]. Depending on the data-access pattern, each type of
memory has advantages and disadvantages. From our empiri-
cal study, we observe that 18 commits (9.7%) fix the inefficient
use of GPU memory.

We found 6 GPU memory-related commits using high-
latency global memory. All threads can access data stored
in global memory in the GPU. However, global memory
has more access latency than shared, constant, and textured
memory. As a result, it is important to reduce global memory
use when possible. For example, the GROMACS-8aa14d1
commit identifies that GROMACS’ bonded kernel performs a
reduction operation across all the threads using atomic instruc-
tion on global memory. However, performing the reduction
operation on high-latency global memory is unnecessary in
many cases. For example, the threads residing in the same
warp can perform the reduction operations in low-latency
shared memory, avoiding expensive global memory access.
However, the implementation fails to realize this property and
suffers from a performance bottleneck.

Due to limited space in register files, efficient register use
is important to reduce register spilling. We found three com-
mits that fix GPU-register spilling. For instance, the QUDA-
b7857af commit identifies register spilling in Lattice-QUDA’s
dslash4_domain_Wall_4d kernel. The kernel used reg-
isters to store coefficients. However, since the coefficients
are not updated during kernel execution, keeping them in
the registers instead of constant memory increases register
pressure, resulting in register spilling.

We found two commits that fix an inefficient host-device
communication. Data movement between the host CPU and
the GPU causes significant performance overhead. The CUDA
cudaMemcpy copies data between the host and device syn-
chronously. Due to this blocking call, it fails to overlap
the computation and communication and thus fails to mask
communication latency. For instance, the ginkgo-154aafb com-
mit identifies that ginkgo’s residual_norm_reduction
performs a synchronous data copy using cudaMemcpy. How-
ever, these high latency blocking function calls can be avoided
by copying the data asynchronously during kernel launch time.

If the source or destination in host memory is not allocated
as pinned, the host-device memory copy will require to transfer
the data to a pinned memory at first. This causes an extra
data copy and causes significant performance overhead. One
such example is identified in the OpenMM-926e7b9 commit,
where OpenMM’s CudaCalcAmoebaVdwForceKernel
transfers the context parameter VdwLambda from host to

https://github.com/TileDB-Inc/TileDB/commit/d51b082
https://github.com/kokkos/kokkos/commit/75fd8bc
https://github.com/kokkos/kokkos/commit/75fd8bc
https://github.com/cp2k/cp2k/commit/7b34ac6
https://github.com/gromacs/gromacs/commit/8aa14d1
https://github.com/lattice/quda/commit/b7857af
https://github.com/lattice/quda/commit/b7857af
https://github.com/ginkgo-project/ginkgo/commit/154aafb
https://github.com/openmm/openmm/commit/926e7b9

device using unpinned host memory.

1 void transpose(Param<T> out, CParam<T> in,
2 dim_type nonBatchBlkSize){
3 ...
4 #pragma unroll

5 - for (dim_type repeat = 0; repeat < TILE_DIM;

6 - repeat += blockDim.y) {

7 + for (int repeat = 0; repeat < TILE_DIM;

8 + repeat += THREADS_Y) {

Listing 4. Commit identifies missed loop unroll opportunity.

2) Sub-optimal code generation by compiler: On several
occasions, the compiler fails to statically reason about the most
opportunities of a source code. We found 9 commits (4.8%)
fixed the sub-optimal code generated by the compiler.

a) Loop unrolling: Loop unrolling is a type of loop
optimization where the loop body is replicated multiple times
to reduce the loop iterations. Loop unrolling enables opportu-
nities for instruction-level parallelism where the processor can
perform simultaneous execution of independent instructions.
Compilers often miss the opportunity for loop unrolling due
to the inability to statically determine the number of loop iter-
ations and the memory access patterns. We found 5 commits
fix missed opportunities for loop unrolling. For instance, the
ArrayFire-7f3fe1e commit identifies the missed opportunity
of loop unrolling, resulting in suboptimal code execution.
As shown in Listing 4, ArrayFire’s transpose kernel uses
#pragma unroll directive to guide the CUDA compiler
to unroll the loop. However, the compiler fails to determine
the memory accesses statically during compile time.

1 +#pragma unroll
2 for (int i=0; i<M; i++){

3 - for (int j=0; j<N; j++){

4 - ...

5 - copy(v[(chirality*M+i)*N+j], clover[parity]

6 - [(padIdx*stride + x)*N + intIdx%N]);

7 - ...

8 - }

9 + Vector vecTmp = vector_load<Vector>(clover

10 + + parity*offset, x +stride*(chirality*M+i));

11 + for (int j=0; j<N; j++)

12 + copy(v[(chirality*M+i)*N+j],

13 + reinterpret_cast<Float*>(&vecTmp)[j]);
14 }

Listing 5. Vectorization of the loop achieves 1.5x speedup

b) Function inlining: Function inlining is a compiler
optimization technique where the body of the called function
replaces a function call. On the one hand, function inlining
can eliminate function call-related overhead, such as passing
arguments and handling return value, and reduces register
spilling. On the other hand, this optimization further opens
many other intra-procedural optimization opportunities. How-
ever, the performance impact of function inlining is not always
obvious and depends on the function, and it’s invocation
pattern. Previous literature has shown that function inlining
optimization may or may not occur depending on the com-
piler version [9]. In our empirical study, we have found 3
performance commits manually direct the compiler to inline

a function. For instance, the libMesh-e0374af commit iden-
tifies that libMesh’s BoundingBox::contains_point
method implemented small helper function is_between to
make contains_point() more readable. However, the
compiler does not generate is_between as an inline and
misses many optimization opportunities.

C. Missing parallelism (MP)

We found that around 13 commits (7%) fix the missing par-
allelism in the original code. We observe a range of parallelism
is introduced, including Vector parallelism/SIMD Parallelism
(5), GPU parallelism (2), Instruction level parallelism (1), and
Task parallelism (5).

1) SIMD parallelism:: The QUDA-5f028db commit iden-
tifies the missing SIMD parallelism. The listing 5 de-
picts the partial commit. As shown in the listing, QUDA‘s
FloatNOrder::load() function has an inner loop per-
forming consecutive memory access. However, the code fails
to use SIMD intrinsic to get the benefits of parallel load/store
operation.

2) GPU parallelism:: The commit HYPRE-a05d194
identifies missing GPU parallelism. The Listing 6
highlights the commit where it shows that HYPRE’s
hypre_ParCSRRelax function iterates a loop sequentially
to read and write to an array and fails to use GPU parallelism.

1 +#if defined(HYPRE_USING_OPENMP_OFFLOAD)

2 + int num_teams = (num_rows+num_rows%1024)/1024;

3 + #pragma omp target teams distribute

4 + parallel for private(i) num_teams(num_teams)

5 + thread_limit(1024) is_device_ptr(u_data,v_data,

6 + l1_norms)

7 +#endif
8 for (i = 0; i < num_rows; i++)

Listing 6. Missed GPU parallelism in HYPRE

3) Task parallelism: The commit GOMC-
37a6bfd identifies that in GOMC’s
CalculateEnergy::ParticleInter function, the
energy calculation of Monte Carlo simulation could not take
full advantage of the parallelism provided by multi-core
processors. As shown in Listing 7, the outer loop first iterates
over all the trials, then performs the energy calculation, which
could be divided into independent tasks for a partition range
and executed in different threads to exploit task parallelism
for efficiency.

1 - for (t = 0; t < trials; ++t){

2 +#pragma omp parallel sections private(start, end)

3 + {

4 + #pragma omp section

5 + if(Schedule(start, end, p, 0, trials))

6 + ...

Listing 7. Missing task parallelism in GOMC.

D. Inefficient parallelization (PO)

We found that 13 commits (7%) fix inefficient parallel code
regions. Among these commits, 11 commits fix the inefficient
work partitioning for the target accelerator.

https://github.com/arrayfire/arrayfire/commit/7f3fe1e
https://github.com/libMesh/libmesh/commit/e0374af
https://github.com/lattice/quda/commit/5f028db
https://github.com/hypre-space/hypre/commit/a05d194
https://github.com/GOMC-WSU/GOMC/commit/37a6bfd
https://github.com/GOMC-WSU/GOMC/commit/37a6bfd

Efficiently implementing a parallel algorithm on GPU archi-
tecture requires consideration of underlying GPU architecture.
Modern GPU architectures are complex consisting of several
streaming multiprocessors (SM) where each SM executes a set
of threads known as warps. To fully utilize the GPU parallel
capability, developers require to correctly split the parallel
workload. An inefficient workload mapping results in load
imbalance and high thread management overhead.

The commit QUDA-4ef8d8a identifies such inefficiency in
QUDA’s Multi-Reduce kernel. In the kernel, the block size,
a CUDA programming abstraction, was incorrectly set that
causing under-utilization of warps in SM.

E. Inefficient Concurrency control (ICS)
Our study found 7 commits (3.8%) fix the concurrency

and synchronization-related performance bugs. These perfor-
mance bugs include unnecessary locks (3), inappropriate lock
granularity (1), use of inefficient locking mechanism (1), and
unnecessary thread synchronization (2).

The commit OpenBLAS-3119b2a identifies unnecessary
locks in OpenBLAS’s alloc_mmap function. Listing 8 de-
picts the case, where the function holds the alloc_lock
while accessing global data structure release_info. How-
ever, the code causes performance inefficiency when OpenMP
thread parallelism is enabled. Since OpenMP already imposes
a lock, this explicit locking is unnecessary.

1 static void *alloc_mmap(void *address){

2 +#if defined(SMP) && defined(USE_OPENMP)

3 + LOCK_COMMAND(&alloc_lock);

4 +#endif
5 release_info[release_pos].address = map_address;
6 release_info[release_pos].func = alloc_mmap_free;
7 release_pos ++;

8 +#if defined(SMP) && defined(USE_OPENMP)

9 + UNLOCK_COMMAND(&alloc_lock);

10 +#endif

Listing 8. Unnecessary locking for OpenMP based multi-threading.

F. Inefficient memory management (IMM)
We found 13 commits (7%) that fix inefficient memory

management-related issues, including memory leak, redundant
memory allocation, and repeated calls for allocation.

The OpenBlas-d744c95 commit identifies repeated alloca-
tion in OpenBLAS’s exec_threads function. The function
allocates buffer by calling blas_memory_alloc function.
The exec_threads function is called by all the participat-
ing threads, which incurs a runtime overhead.

G. Other forms of inefficiencies
Our study finds a small set of other forms of inefficiencies

including unintentional programming logic error (PE), IO
inefficiency (IO), compiler regression (CR), and unnecessary
process communication (UPC).

IV. RQ2: FIXING PERFORMANCE INEFFICIENCY

This section discusses the performance optimization tech-
niques we frequently observed in our empirical study. We used
similar evidence-based approach as discussed in Section III for
bug fix categorization.

A. Micro-architecture specific optimization
We observed that 64 commits (34.4%) are related to micro-

architecture-specific algorithm optimization. These optimiza-
tions include locality optimization for cache and memory (42),
strength reduction (6), use of data types that reduces compu-
tation and memory overhead (4), using architecture-specific
fast instruction (3), architecture-specific logic modification (3),
choosing architecture specific fast kernel (3), and reduced
precision arithmetic (3).

a) Operator strength reduction: Strength reduction is
an optimization technique that replaces micro-architecturally
expensive operations such as division, square-root, and expo-
nential operation with a less expensive operation. For instance,
the CasADi-29b6882 commit replaces the expensive integer
division (20-26 clocks for 32-bit division) with a low overhead
addition operation (1 clock cycle) in the get_nz function.

b) Use of data types that reduces computation and
memory overhead: Data types with bigger sizes may incur
significant latency compared to the smaller ones. When the
algorithm permits, choosing a data type with lower bytes can
improve performance. For instance, the GROMACS-85c36b9
commit reports that OpenCL’s AMD version implements float3
as 16 bytes. By replacing the float3 with a standard 4-byte
float, the kernel improves the register utilization and observes
1.25× and 1.4× for the Ewald and RF force-only kernels on
AMD Vega GPU, respectively.

c) Architecture specific fast instruction: One example of
such performance commit is OpenBLAS-2dfb804, where it
reported OpenBLAS dgemm performance dropped on Ryzen
7 3700X CPU due to high latency vpermpd instruction
used in the kernel. The commit replaces the instruction with
low latency, high throughput vpermilpd instruction in the
kernel.

1) Data locality optimization: The empirical study found
that 42 commits (21%) are data locality optimization, includ-
ing data structure optimization (7), tuning computational ker-
nel size (6), reordering memory reference to improve temporal
and spatial locality (5), reducing GPU-global memory ac-
cess (5), thread-aware data access (3), improve register/cache
utilization via blocking (2), avoid memory de-reference by
storing data in register (2), memory pre-fetching and pinning
(2).

a) Data structure optimization: Data structures that pro-
mote regular memory access improves spatial locality and thus
lower the memory access latency. C++’s STL library provides
std::vector and std::array. Both of the containers
store objects in contiguous memory locations and thus cache
efficient when accessed sequentially. On the other hand, STL’s
std::list is a doubly linked list and may incur a significant
performance bottleneck in the cache. As a result, the CGAL-
8855eb5 commit reported that it changed the lists to vectors
in the code and observed performance improvement.

b) Reorder memory reference for data reuse: Optimiza-
tion by reordering memory references improves temporal
locality and thus improves cache utilization. One such example
is the OpenBLAS-45fdf95 commit as shown in Listing 9,

https://github.com/lattice/quda/commit/4ef8d8a
https://github.com/xianyi/OpenBLAS/commit/3119b2a
https://github.com/xianyi/OpenBLAS/commit/d744c95
https://github.com/casadi/casadi/commit/29b6882
https://github.com/gromacs/gromacs/commit/85c36b9
https://github.com/xianyi/OpenBLAS/commit/2dfb804
https://github.com/CGAL/cgal/commit/CGAL-8855eb5
https://github.com/CGAL/cgal/commit/CGAL-8855eb5
https://github.com/xianyi/OpenBLAS/commit/45fdf95

which reorders the memory references, ptr_a0 and ptr_b0,
to immediately reuse the pointers after first use.

1 for (k_count = k; k_count > 1; k_count -=2) {
2 LOAD_A_PAIR(0);

3 + ptr_a0 += 16 * 2;
4 BROADCAST_B_PAIR(0, 0); MATMUL_4X(0, 0, 0);
5 BROADCAST_B_PAIR(0, 1); MATMUL_4X(0, 0, 1);
6 BROADCAST_B_PAIR(0, 2); MATMUL_4X(0, 0, 2);

7 + ptr_b0 += 4 * 2;
8 BROADCAST_B_PAIR(1, 0); MATMUL_4X(0, 1, 0);
9 BROADCAST_B_PAIR(1, 1); MATMUL_4X(0, 1, 1);

10 BROADCAST_B_PAIR(1, 2); MATMUL_4X(0, 1, 2);

11 - ptr_b0 += 4 * 2;
12 ptr_b1 += 4 * 2;

13 - ptr_a0 += 16 * 2;

Listing 9. Reordering memory references.

c) Reducing GPU-global memory access: As we dis-
cussed in section III-B1, reducing GPU global memory ref-
erence can significantly improve application performance. For
example, the QUDA-aa7049a commit eliminates the global
GPU memory access by loading the data on the read-only data
cache by explicitly calling __ldg (Read-Only Data Cache
Load) intrinsic.

In addition to reducing global memory access, our study
finds other GPU memory optimizations, including memory
coalescing, avoiding GPU texture memory, asynchronous data
transfer between host and device, and configuring shared cache
sizes.

B. Domain specific optimization

We found that 27 performance commits (14.5%) are
domain-specific optimization. These optimizations include
eliminating unnecessary operation (8), reducing iteration or
iterative data structure traversal (8), batching repeated function
calls (3), domain-specific reduction of asymptotic complexity
(3), avoiding unnecessary communication (2), code specializa-
tion (2) and lazy house-keeping to reduce resource manage-
ment related overhead (1).

a) Eliminating unnecessary operation: This category of
optimization was implemented to eliminate unnecessary func-
tion calls, traversal, memory allocation, or memory references.

For instance, HYPRE’s rocSPARSE is a BLAS li-
brary for sparse computation implemented on AMD’s
Radeon Open Compute ROCm runtime. In the original im-
plementation of hypreDevice_CSRSpGemmRocsparse
function, it sorted the CSR matrix by calling the
hypre_SortCSRRocsparse function. However, the com-
mit HYPRE-827e799 suggests that the sort is unnecessary for
this implementation and eliminating them provides “substan-
tial performance savings”.

b) Reduce loop iteration/traversal of data structure: Our
study finds 8 commits eliminate unnecessary data-structure
traversal by early bailing out the loop iteration. One example
is OpenMM’s getByMass function, where the code iterated
the entire periodic table to search for an element that has
an immediate higher mass than the target mass. However,
since the periodic table is sorted by monotonically increasing
element mass, iterating up to the first element that has a higher

mass than the target is sufficient. The commit OpenMM-
8bcff36 implements the optimization and reports that a test
case enjoys a runtime speedup of 19×.

C. Guiding the compiler for missed optimization

We found 27 commits (14.5%) explicitly guiding the com-
piler for missed compiler optimization. These include function
inlining (4), scalar replacement (1), enabling compile time
evaluation (5), and various loop optimizations (17).

a) Function inlining: The libMesh-e0374af commit in-
lines is_between(), the helper function for further com-
piler optimization. As a result, the commit reports the single
line enjoys 6.3× speedup.

b) Loop unrolling: The ArrayFire-928e77a explicitly un-
rolls the loop using OpenMP directive, #pragma unroll.
Loop unrolling further enables several compiler optimizations,
including vectorization and instruction-level parallelism. The
commit reports an improvement of 1.2× in runtime.

c) Loop invariant code motion: The libMesh-
1ad14f2 commit moves the build_side_list and
build_node_list outside the loop to avoid redundant
allocation and sort operations. The commit reports
O(Nsplits/Nprocs) times performance improvement.

D. Domain and architecture agnostic algorithm and data-
structure optimization

This category of performance commits implements domain
or architecture-agnostic optimizations for algorithms or data-
structure traversal. We found that 17 commits (9.1%) adopt
this category of optimization.

a) Reducing asymptotic complexity of search algo-
rithm: One such example is the GROMACS-a711d41 com-
mit that implements binary search for molecule lookup
in atoms_to_settles function, reducing the time-
complexity of lookup to O(log n). In another instance, the
mlpack-198cec8 commit implements a priority queue for
neighbor search algorithm where it performs the ”peek” oper-
ation at O(1) time.

b) Use of fast data structure interface: The data-structure
libraries such as C++’s STL provides various data structure
containers. However, the efficiency of the data structures
depends on the use case. For instance, C++’s STL provides a
contiguous data structure std::array and std::vector.
However, std::array is a static array whose size is known
at compile time and allocated inside stack memory. As a result,
arrays are not re-sizable. On the other hand, std::vector is a
dynamic array residing on a heap that can grow and shrink at
runtime. Despite the dynamic allocation capability, allocating
std::vector suffers from memory allocation overhead
while std::array does not. Applications that know the
size of the contiguous memory during compile-time can ben-
efit from low overhead std::array over std::vector.
We found that the ArrayFire-ee30e27 commit replaces the
std::vectors with std::array.

https://github.com/lattice/quda/commit/aa7049a
https://github.com/hypre-space/hypre/commit/827e799
https://github.com/openmm/openmm/commit/8bcff36
https://github.com/openmm/openmm/commit/8bcff36
https://github.com/libMesh/libmesh/commit/e0374af
https://github.com/arrayfire/arrayfire/commit/928e77a
https://github.com/libMesh/libmesh/commit/1ad14f2
https://github.com/libMesh/libmesh/commit/1ad14f2
https://github.com/gromacs/gromacs/commit/a711d41
https://github.com/mlpack/mlpack/commit/198cec8

c) Caching/Memoization/Lookup table: We found that
caching and memoization eliminated redundant computation
and redundant traversal (3). Additionally, static lookup tables
eliminate expensive runtime evaluation (2).

For instance, CGAL’s RemoveCurveFromStatusLine func-
tion searches the curve to be removed from the status
line implemented using STL’s multi-set container. However,
the caller function, HandleLeftCurves, iteratively calls
RemoveCurveFromStatusLine to remove the consecu-
tive curves. Since multi-set stores the curves in sorted order,
it is unnecessary to search for the next curve. In fact, the
commit CGAL-351249b eliminates the unnecessary search by
advancing the container iterator in the first call and caching it
for the next call.

E. Introduce parallelism and Balancing parallel load

We found 17 commits (9.1%) introduce parallelism in code,
and 11 commits (5.9%) fix the parallel load imbalance in the
source code. The commits introduce parallelism by explicitly
calling vector intrinsics (5), pthread based task parallelism (3),
or by OpenMP-based parallel directives (2) and OneAPI (1).
The commit that fixes the performance bugs related to parallel
load imbalance uses techniques such as tuning task size (9),
explicitly setting thread numbers (4), reducing parallelization
(3), and sorting workload and schedule (1).

F. Memory management

Our empirical study finds 13 commits (7%) that fix the poor
memory management-related performance bugs. These fixes
include avoiding memory leaks by freeing allocated memory
(5), pre-allocation to avoid repeated allocation (4), increasing
memory size (1), using efficient memory management API (2),
and using object reference rather than copy (1).

G. Eliminate unnecessary synchronization/barrier

Our study finds 7 commits (3.8%) fix synchronization/
barrier-related performance bugs. These fixes include elim-
inating unnecessary lock (3), efficient lock implementation
with atomic intrinsic (1), replacing strong consistency with
a weaker one (1), eliminating unnecessary synchronization
(1), and rewriting kernel to make memory access GPU warp-
synchronous (1).

V. RQ3: BUG FIXING EFFORT

To understand the effort required to fix HPC performance
bugs, we analyzed all the confirmed performance bugs. For
measuring bug fixing effort, we adopted two metrics: (1) patch
size (LOC) and (2) files changed (count). Bug-fixing complex-
ity is measured by patch size (LOC) and files modified (count).
Patch size (LOC) indicates how many lines are modified, and
files modified (count) indicates how many files are modified to
fix the bug. Similar to prior SE research [43], [40], we adopted
LOC and file changes as an indicator for bug-fixing efforts.
In our study, we also find these metrics justify the effort of
fixing the bug. For instance, data locality-related performance
bugs such as mlpack-723dea8 often require many lines of

Perf Non-Perf Perf Non-Perf

Fig. 3. Comparison of bug-fixing effort (“Perf” = “performance bug”, “Non-Perf” =
“non-performance bug”)

code modification due to several access locations within the
source code. Intuitively, if a bug is complicated to fix, it would
require applying fixes with multiple lines and multiple source
file locations.

For our comparison, we have randomly selected 186 non-
performance bugs from our existing 23 projects. We didn’t
select any non-performance bug from other repositories which
would make the comparison unreliable. In our analysis pre-
sented in Figure 3, we can see on average for performance
issues, bug-fixing patches require around 80 lines whereas
for non-performance it requires less than 50 lines. It shows
that fixing performance bugs takes more effort than non-
performance bugs. In addition to that, the number of files
required to fix a performance bug is higher than non-
performance bugs. To statistically validate the observations
of performance and non-performance bugs, we conducted a
Mann-Whitney U-test [52]. p-values for patch size and the
number of files changed are 0.00001 and 0.0455, respectively,
which is less than 0.05 (statistically significant). From this,
we can conclude that fixing performance bugs requires more
effort than fixing non-performance bugs.

Although the above-mentioned metrics are widely adopted
to quantify bug-fixing complexity, however, LOC falls short
in indicating how much effort it required to identify the root-
cause of the performance bugs. Often identifying performance
bugs require rigorous debugging effort. The commits rarely
provide information on debugging efforts. For this reason, in
addition to LOC and file changes, we further measure the skill
level of bug-fix committers, which we discuss in the following
section.

VI. RQ4: DEVELOPER EXPERTISE FOR PERF BUG FIX

Due to the complex underlying implementation of HPC
applications, fixing performance bugs requires HPC domain-
specific knowledge. To quantify the domain expertise of the
developers in the HPC projects, similar to prior work [53] [54]
[55], we define an HPC skill vector: devs = (w1, w2, . . . , wn),
where each dimension corresponds to one HPC skill category.

https://github.com/CGAL/cgal/commit/351249b
 https://github.com/mlpack/mlpack/commit/723dea88435686b72359793ace767d0b409635af

TABLE II
KEYWORD TERMS USED FOR EACH HPC SKILL CATEGORY

Category Keyword terms

gpu gpu, device , cuda, nvidia, kepler, warp, opencl
vectorization lxvp, vector, simd

memory/data locality std::array, cache , prefetch, memory, locality
compiler optimization unroll, const, inline, static

task optimization openmp, omp, parallel
concurrency lock, semaphore, mutex, barrier

data-structure library std::array, std::vector, std::set, DynamicList, arma
memory management leak, alloc

We construct this skill vector for individual developers who
have contributed to their respective HPC projects by analyzing
both the commit message and the code, taking into account
the possibility that an expert committer may make a commit
without a message. For this purpose, first, we list the keywords
of each skill category as shown in Table II. Then we search
these keywords in all the submitted commits of each developer.
We use the email addresses to identify each committer. If
any keyword terms corresponding to an HPC skill category
are present inside a developer’s commit, we assume the
committing developer has that skill; hence we increment the
corresponding skill weight value wi of that developer by one.
We then calculate the HPC skill score for each developer by
averaging their skill weights for each category as shown in
Equation 1. We further performed log transformation on this
score for convenient representation and statistical analysis.

HPCSScore(devs) =

n∑
i=1

wi/n (1)

By comparing the skill scores among the developers, we aim
to answer whether the fixer of performance bugs is relatively
more experienced or not. To understand the role of domain
expertise, we also obtain the skill score of the committers
of the 186 performance fixes. We then compared these skill
scores with all the developers in the 23 projects. Figure 4(a)
shows the HPC expertise score of the performance committer
vs. the overall expertise of the developers in all projects
we studied. The results show that the median HPC skill
scores of the performance-fixing developers are higher (2.245)
when compared to the median skill score of all developers
(0.301). Mann-Whitney U-test on the result returned P -value
as 0.001, which is less than 0.05, suggesting that this result is
statistically significant. This analysis proves that performance-
fixing developers have significantly higher domain expertise
in HPC. Additionally, we plot the cumulative distribution
function (CDF) on the HPC skill score in Figure 4(b). We draw
the CDF to plot the skill distribution of all the committers
in the HPC projects. This distribution indicates how skilled
are the HPC application developers to solve the performance
bugs. According to the figure, we find only 4.4% of the HPC
developers have a skill score higher than 2.245. Previously in
Figure 4(a) ,we show that 2.245 is the median skill score of
the committers submitting the 186 performance fixes. We con-
clude that highly skilled developers are limited in number. As

a result, maintaining highly performant scientific applications
becomes challenging.

Fig. 4. (a) HPC skill score of developers - overall vs performance-fixing committer
(outlier omitted), (b) CDF on HPC skill score of all developers.

VII. THREATS TO VALIDITY

Threats to internal validity may be connected to how perfor-
mance issues are categorized. The absence of any documen-
tation to substantiate the code’s original intent can introduce
a level of bias into this procedure. Therefore, all the authors
independently examined the performance bugs to minimize
any bias and worked out disagreements until a consensus was
reached. The taxonomy construction also adhered to metic-
ulous manual analysis techniques, which are only confirmed
once agreed upon by all authors, to determine whether the
issue is performance-related or not and the root causes of
the performance bugs. Nevertheless, we acknowledge that
mistakes may inevitably occur during the manual procedure.

We considered the various HPC project types to ensure
validity and conducted manual analysis project-wise. This
allows us to compare the different kinds of bugs fairly and
determine which types of bugs are most widespread in a
particular project.

Other threats can be related to the external validity, which
is how well our taxonomy generalizes outside of the dataset
because our study evaluated 186 performance commits from
23 projects. Our manual project selection may cause some
projects with large commits to be filtered out and it is possible
that we missed some of the sub-domain as well. However,
these projects have been carefully selected, and we considered
both small and large-scale projects in various domains to
maintain good coverage. Additionally, it is challenging to
increase the dataset because HPC is a vast field with various
projects, not each of which was well-maintained at the time
of our study. Apart from that, the manual analysis required
much labor; each individual contributed roughly 480 hours to
collecting and examining the issues. Nevertheless, we believe
our findings will inform the HPC application developers and
provide more insight into the future of HPC performance bug
detection.

VIII. DISCUSSION

The findings of our empirical study provide valuable in-
sights into the HPC performance bugs and the required efforts
toward mitigation.

First, our study finds a wide range of root causes of perfor-
mance inefficiencies in HPC applications. To fix these perfor-
mance bugs, the HPC application developers need in-depth
knowledge about underlying hardware architecture, parallel
programming models, data-structure libraries, compiler opti-
mization techniques and their limitations, resource scheduling
strategies of the runtime, and finally, the problem domain for
domain-specific optimization opportunities. Due to cognitive
overload, it becomes challenging for HPC application devel-
opers to write efficient code.

Second, our study finds that fixing performance bugs re-
quires significantly more effort than non-performance bugs.
Furthermore, fixing performance bugs require higher domain
expertise. However, highly skilled developers are limited in
number. As a result, maintaining highly performant scientific
applications becomes challenging.

To overcome the challenges, the HPC developer community
requires innovation in performance analysis tools, performance
portable frameworks and runtimes, and recommender systems
for writing high performance code. Our study makes two con-
tributions toward the goal. First, it highlights the performance
bugs frequently appearing in real-world HPC applications to
guide the SE research community. Second, our study further
curates a labeled dataset of performance bugs and fix patterns.
On the one hand, this dataset will help to develop bug detection
tools; on the other hand, the fix pattern datasets will help to
build recommender systems to write efficient code.

IX. RELATED WORKS

A. Studies on performance bugs

Performance bugs are a major contributor to performance
degradation and resource waste in real-world software systems
[41]. There has been a wide array of empirical studies on
performance bugs that investigated performance bug char-
acteristics. These studies investigate the mobile applications
[43], [56], desktop or server applications [11], [13], [57],
highly configurable software [42], and JavaScript systems [58].
More recently, several literatures study the domain-specific
performance bugs, such as inefficient code on accelerators
(i.e GPUs) [59], sub-optimal compiler code generation [9],
autonomous vehicles [60], block-chain [61] and deep learning
(DL) systems [62]–[65]. Unlike prior work, we perform an
empirical study on the real-world HPC performance bugs.
Also, since the scope of this work is to holistically characterize
the performance bug in HPC, we left the comparative analysis
of HPC and non-HPC performance bugs as future work.

B. Analyzing performance bugs in HPC applications

There is a substantial body of research that develops
performance analysis tools for HPC applications [66]–[70].
The HPC community relies on these performance analysis
tools to identify performance bugs. However, the capability

of current performance tools is limited. First, performance
measurement often causes significant runtime overhead for
the HPC application [8]. Second, while performance profiling
tools can identify the code regions that spend significant time,
they often fail to guide the developer with a meaningful
performance optimization strategy. It’s the expert developers’
responsibility to fix the performance bugs. Our empirical study
complements the performance analysis tools, guides novice de-
velopers toward possible optimizations, and provides insights
for the tool community to develop sophisticated performance
analysis tools.

X. CONCLUSION

In this study, we performed an empirical analysis on 1729
potential performance commits from 23 open-source HPC
projects and identified 186 commits that were related to
performance issues. Through manual analysis, we classified
the performance bugs and fixes into ten and seven categories,
respectively. Moreover, our analysis identified that fixing HPC
performance bugs requires more effort and expertise than
non-performance bugs. To the best of our knowledge, this is
the first empirical study of the real-world HPC application
performance bug. Our study provides a list of insights for HPC
application developers. We hope our study will inspire soft-
ware engineering researchers to innovate tools and techniques
to reduce the developer burden.

ACKNOWLEDGEMENTS

This material is based in part upon work supported by
National Science Foundation awards CNS-2006373 and CCF-
2152819. We also thank Arjun Saha for his contribution to
this work.

REFERENCES

[1] C. Yang, W. Xue, H. Fu, H. You, X. Wang, Y. Ao, F. Liu, L. Gan, P. Xu, L. Wang
et al., “10m-core scalable fully-implicit solver for nonhydrostatic atmospheric
dynamics,” in SC’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 2016, pp.
57–68.

[2] H. Bhatia, F. Di Natale, J. Y. Moon, X. Zhang, J. R. Chavez, F. Aydin, C. Stanley,
T. Oppelstrup, C. Neale, S. K. Schumacher et al., “Generalizable coordination of
large multiscale workflows: challenges and learnings at scale,” in Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, 2021, pp. 1–16.

[3] M. De Vivo, M. Masetti, G. Bottegoni, and A. Cavalli, “Role of molecular dynamics
and related methods in drug discovery,” Journal of medicinal chemistry, vol. 59,
no. 9, pp. 4035–4061, 2016.

[4] A. Bhattacharjee and J. Wells, “Preface to special topic: Building the bridge to the
exascale—applications and opportunities for plasma physics,” p. 090401, 2021.

[5] P. Crozier, M. Howard, W. J. Rider, B. A. Freno, S. W. Bova, and B. Carnes,
“Advanced technology and mitigation (atdm) sparc re-entry code fiscal year
2017 progress and accomplishments for ecp.” Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States), Tech. Rep., 2017.

[6] A. Pasquali, M. Schönherr, M. Geier, and M. Krafczyk, “Simulation of external
aerodynamics of the drivaer model with the lbm on gpgpus,” Parallel computing:
On the road to exascale, vol. 27, pp. 391–400, 2016.

[7] J. Ghorpade, J. Parande, M. Kulkarni, and A. Bawaskar, “Gpgpu processing in
cuda architecture,” arXiv preprint arXiv:1202.4347, 2012.

[8] K. Zhou, X. Meng, R. Sai, D. Grubisic, and J. M. Mellor-Crummey, “An automated
tool for analysis and tuning of gpu-accelerated code in hpc applications,” IEEE
Transactions on Parallel and Distributed Systems, 2021.

[9] J. Tan, S. Jiao, M. Chabbi, and X. Liu, “What every scientific programmer should
know about compiler optimizations?” in Proceedings of the 34th ACM International
Conference on Supercomputing, 2020, pp. 1–12.

[10] P. Su, S. Jiao, M. Chabbi, and X. Liu, “Pinpointing performance inefficiencies via
lightweight variance profiling,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2019, pp. 1–19.

[11] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and detecting
real-world performance bugs,” ACM SIGPLAN Notices, vol. 47, no. 6, pp. 77–88,
2012.

[12] M. Selakovic and M. Pradel, “Performance issues and optimizations in javascript:
an empirical study,” in Proceedings of the 38th International Conference on
Software Engineering, 2016, pp. 61–72.

[13] S. Zaman, B. Adams, and Hassan, “A qualitative study on performance
bugs,” in 2012 9th IEEE Working Conference on Mining Software Repositories
(MSR). Zurich: IEEE, Jun. 2012, pp. 199–208. [Online]. Available: http:
//ieeexplore.ieee.org/document/6224281/

[14] M. Jovic, A. Adamoli, and M. Hauswirth, “Catch me if you can: performance bug
detection in the wild,” in Proceedings of the 2011 ACM international conference
on Object oriented programming systems languages and applications, 2011, pp.
155–170.

[15] R. R. Curtin, M. Edel, M. Lozhnikov, Y. Mentekidis, S. Ghaisas, and
S. Zhang, “mlpack 3: a fast, flexible machine learning library,” Journal
of Open Source Software, vol. 3, p. 726, 2018. [Online]. Available:
https://doi.org/10.21105/joss.00726

[16] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown,
P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan,
M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, “LAMMPS - a flexible
simulation tool for particle-based materials modeling at the atomic, meso, and
continuum scales,” Comp. Phys. Comm., vol. 271, p. 108171, 2022.

[17] Q. Wang, X. Zhang, Y. Zhang, and Q. Yi, “AUGEM: automatically generate high
performance dense linear algebra kernels on x86 CPUs,” in Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis. Denver Colorado: ACM, Nov. 2013, pp. 1–12. [Online]. Available:
https://dl.acm.org/doi/10.1145/2503210.2503219

[18] The CGAL Project, CGAL User and Reference Manual, 5.5 ed. CGAL Editorial
Board, 2022. [Online]. Available: https://doc.cgal.org/5.5/Manual/packages.html

[19] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005, special issue on
“Program Generation, Optimization, and Platform Adaptation”.

[20] P. Yalamanchili, U. Arshad, Z. Mohammed, P. Garigipati, P. Entschev,
B. Kloppenborg, J. Malcolm, and J. Melonakos, “ArrayFire - A high performance
software library for parallel computing with an easy-to-use API,” Atlanta, 2015.
[Online]. Available: https://github.com/arrayfire/arrayfire

[21] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial approach
to computational continuum mechanics using object-oriented techniques,”
Computers in Physics, vol. 12, no. 6, p. 620, 1998. [Online]. Available:
http://scitation.aip.org/content/aip/journal/cip/12/6/10.1063/1.168744

[22] P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. Bruns, J. P. Ku,
K. A. Beauchamp, T. J. Lane, L.-P. Wang, D. Shukla, T. Tye, M. Houston, T. Stich,
C. Klein, M. R. Shirts, and V. S. Pande, “OpenMM 4: A Reusable, Extensible,
Hardware Independent Library for High Performance Molecular Simulation,”
Journal of Chemical Theory and Computation, vol. 9, no. 1, pp. 461–469, Jan.
2013. [Online]. Available: https://pubs.acs.org/doi/10.1021/ct300857j

[23] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. C. V. Dobrev,
Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman,
J. Dahm, D. Medina, and S. Zampini, “MFEM: A modular finite element methods
library,” Computers & Mathematics with Applications, vol. 81, pp. 42–74, 2021.

[24] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Ellingwood,
R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez, N. Liber, J. Madsen, J. Miles,
D. Poliakoff, A. Powell, S. Rajamanickam, M. Simberg, D. Sunderland, B. Tur-
cksin, and J. Wilke, “Kokkos 3: Programming model extensions for the exascale
era,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 4, pp.
805–817, 2022.

[25] H. J. C. Berendsen, D. v. d. Spoel, and R. v. Drunen, “GROMACS:
A message-passing parallel molecular dynamics implementation,” Computer
Physics Communications, vol. 91, no. 1, pp. 43–56, 1995. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/001046559500042E

[26] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi: a
software framework for nonlinear optimization and optimal control,” Mathematical
Programming Computation, vol. 11, no. 1, pp. 1–36, Mar. 2019. [Online].
Available: http://link.springer.com/10.1007/s12532-018-0139-4

[27] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, “Libmesh: A c++ library
for parallel adaptive mesh refinement/coarsening simulations,” Eng. with Comput.,
vol. 22, no. 3–4, p. 237–254, dec 2006.

[28] TileDB, Inc., tiledb: Universal Storage Engine for Sparse and Dense
Multidimensional Arrays, 2022, r package version 0.15.0. [Online]. Available:
https://github.com/TileDB-Inc/TileDB-R

[29] J. Kim, A. D. Baczewski, T. D. Beaudet, A. Benali, M. C. Bennett, M. A. Berrill,
N. S. Blunt, E. J. L. Borda, M. Casula, D. M. Ceperley et al., “Qmcpack: an open
source ab initio quantum monte carlo package for the electronic structure of atoms,
molecules and solids,” Journal of Physics: Condensed Matter, vol. 30, no. 19, p.
195901, 2018.

[30] G. Chourdakis, K. Davis, B. Rodenberg, M. Schulte, F. Simonis, B. Uekermann,
G. Abrams, H. Bungartz, L. Cheung Yau, I. Desai, K. Eder, R. Hertrich, F. Lindner,
A. Rusch, D. Sashko, D. Schneider, A. Totounferoush, D. Volland, P. Vollmer,
and O. Koseomur, “preCICE v2: A sustainable and user-friendly coupling library
[version 1; peer review: 2 approved],” Open Research Europe, vol. 2, no. 51,
2022. [Online]. Available: https://doi.org/10.12688/openreseurope.14445.1

[31] R. D. Falgout and U. M. Yang, “hypre: A Library of High Performance
Preconditioners,” in Computational Science — ICCS 2002, G. Goos, J. Hartmanis,
J. van Leeuwen, P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan, and J. J.
Dongarra, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, vol. 2331,
pp. 632–641, series Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/3-540-47789-6 66

[32] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C. Rebbi, “Solving
Lattice QCD systems of equations using mixed precision solvers on GPUs,”
Computer Physics Communications, vol. 181, no. 9, pp. 1517–1528, Sep. 2010,
arXiv:0911.3191 [hep-lat]. [Online]. Available: http://arxiv.org/abs/0911.3191

[33] H. Anzt, T. Cojean, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak, T. Ribizel,
Y. M. Tsai, and E. S. Quintana-Ortı́, “Ginkgo: A Modern Linear Operator
Algebra Framework for High Performance Computing,” ACM Transactions on
Mathematical Software, vol. 48, no. 1, pp. 2:1–2:33, Feb. 2022. [Online].
Available: https://doi.org/10.1145/3480935

[34] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Aprà,
“Advances, Applications and Performance of the Global Arrays Shared Memory
Programming Toolkit,” The International Journal of High Performance Computing
Applications, vol. 20, no. 2, pp. 203–231, May 2006. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/1094342006064503

[35] Y. Nejahi, M. S. Barhaghi, J. Mick, B. Jackman, K. Rushaidat, Y. Li,
L. Schwiebert, and J. Potoff, “GOMC: GPU Optimized Monte Carlo for
the simulation of phase equilibria and physical properties of complex
fluids,” SoftwareX, vol. 9, pp. 20–27, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2352711018301171

[36] F. Gygi, “Architecture of qbox: A scalable first-principles molecular dynamics
code,” IBM J. Res. Dev., vol. 52, no. 1/2, p. 137–144, jan 2008.

[37] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond, and N. A.
Romero, “Elemental: A New Framework for Distributed Memory Dense Matrix
Computations,” ACM Transactions on Mathematical Software, vol. 39, no. 2,
pp. 1–24, Feb. 2013. [Online]. Available: https://dl.acm.org/doi/10.1145/2427023.
2427030

[38] “java implementation of the git version control system. ”www.eclipse.org/jgit”,”
2022, [Online; accessed 14-July-2022].

[39] Y. Chen, S. Winter, and N. Suri, “Inferring Performance Bug Patterns from
Developer Commits,” in 2019 IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE), Oct. 2019, pp. 70–81, iSSN: 2332-6549.

[40] F. Nusrat, F. Hassan, H. Zhong, and X. Wang, “How Developers Optimize
Virtual Reality Applications: A Study of Optimization Commits in Open Source
Unity Projects,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), May 2021, pp. 473–485, iSSN: 1558-1225.

[41] S. Garg, R. Z. Moghaddam, N. Sundaresan, and C. Wu, “PerfLens: a data-driven
performance bug detection and fix platform,” in Proceedings of the 10th
ACM SIGPLAN International Workshop on the State Of the Art in Program
Analysis. Virtual Canada: ACM, Jun. 2021, pp. 19–24. [Online]. Available:
https://dl.acm.org/doi/10.1145/3460946.3464318

[42] X. Han and T. Yu, “An Empirical Study on Performance Bugs for Highly
Configurable Software Systems,” in Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement.
Ciudad Real Spain: ACM, Sep. 2016, pp. 1–10. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2961111.2962602

[43] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting performance bugs
for smartphone applications,” in Proceedings of the 36th International Conference
on Software Engineering. Hyderabad India: ACM, May 2014, pp. 1013–1024.
[Online]. Available: https://dl.acm.org/doi/10.1145/2568225.2568229

[44] K. Herzig and A. Zeller, “The impact of tangled code changes,” in Proceedings
of the 10th Working Conference on Mining Software Repositories, ser. MSR ’13.
IEEE Press, 2013, p. 121–130.

[45] J. Chen, H. Ma, and L. Zhang, “Enhanced compiler bug isolation via memoized
search,” in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’20. New York, NY, USA:
Association for Computing Machinery, 2021, p. 78–89. [Online]. Available:
https://doi.org/10.1145/3324884.3416570

[46] F. Khan, B. Chen, D. Varro, and S. McIntosh, “An empirical study of type-related
defects in python projects,” IEEE Transactions on Software Engineering, vol. 48,
no. 8, pp. 3145–3158, 2022.

[47] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead Jr., “Does
bug prediction support human developers? findings from a google case study,” in
Proceedings of the 2013 International Conference on Software Engineering, ser.
ICSE ’13. IEEE Press, 2013, p. 372–381.

[48] H. Zhang, X. Zhou, X. Huang, H. Huang, and M. A. Babar, “An evidence-based
inquiry into the use of grey literature in software engineering,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering, ser.
ICSE ’20. New York, NY, USA: Association for Computing Machinery, 2020,
p. 1422–1434. [Online]. Available: https://doi.org/10.1145/3377811.3380336

[49] Nvidia, “Cuda c++ best practices guide,” https://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/, [Accessed 01-Sep-2022].

[50] “Cuda toolkit,” Aug 2022. [Online]. Available: https://developer.nvidia.com/
cuda-toolkit

[51] “C++ Standard Template Library.” [Online]. Available: https://www.cppreference.
com/Cpp STL ReferenceManual.pdf

http://ieeexplore.ieee.org/document/6224281/
http://ieeexplore.ieee.org/document/6224281/
https://doi.org/10.21105/joss.00726
https://dl.acm.org/doi/10.1145/2503210.2503219
https://doc.cgal.org/5.5/Manual/packages.html
https://github.com/arrayfire/arrayfire
http://scitation.aip.org/content/aip/journal/cip/12/6/10.1063/1.168744
https://pubs.acs.org/doi/10.1021/ct300857j
https://www.sciencedirect.com/science/article/pii/001046559500042E
http://link.springer.com/10.1007/s12532-018-0139-4
https://github.com/TileDB-Inc/TileDB-R
https://doi.org/10.12688/openreseurope.14445.1
http://link.springer.com/10.1007/3-540-47789-6_66
http://arxiv.org/abs/0911.3191
https://doi.org/10.1145/3480935
http://journals.sagepub.com/doi/10.1177/1094342006064503
https://www.sciencedirect.com/science/article/pii/S2352711018301171
https://www.sciencedirect.com/science/article/pii/S2352711018301171
https://dl.acm.org/doi/10.1145/2427023.2427030
https://dl.acm.org/doi/10.1145/2427023.2427030
www.eclipse.org/jgit
https://dl.acm.org/doi/10.1145/3460946.3464318
https://dl.acm.org/doi/10.1145/2961111.2962602
https://dl.acm.org/doi/10.1145/2961111.2962602
https://dl.acm.org/doi/10.1145/2568225.2568229
https://doi.org/10.1145/3324884.3416570
https://doi.org/10.1145/3377811.3380336
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.cppreference.com/Cpp_STL_ReferenceManual.pdf
https://www.cppreference.com/Cpp_STL_ReferenceManual.pdf

[52] H. B. Mann and D. R. Whitney, “On a test of whether one of two random variables
is stochastically larger than the other,” The annals of mathematical statistics, pp.
50–60, 1947.

[53] T. Dey, A. Karnauch, and A. Mockus, “Representation of developer expertise
in open source software,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), 2021, pp. 995–1007.

[54] J. E. Montandon, L. Lourdes Silva, and M. T. Valente, “Identifying Experts
in Software Libraries and Frameworks Among GitHub Users,” in 2019
IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR). Montreal, QC, Canada: IEEE, May 2019, pp. 276–287. [Online].
Available: https://ieeexplore.ieee.org/document/8816776/

[55] C. Hauff and G. Gousios, “Matching GitHub Developer Profiles to Job
Advertisements,” in 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories. Florence, Italy: IEEE, May 2015, pp. 362–366. [Online].
Available: http://ieeexplore.ieee.org/document/7180095/

[56] M. Linares-Vásquez, C. Vendome, Q. Luo, and D. Poshyvanyk, “How developers
detect and fix performance bottlenecks in Android apps,” in 2015 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), Sep. 2015,
pp. 352–361.

[57] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,
M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani, “Scaling
Memcache at Facebook,” p. 14.

[58] M. Selakovic and M. Pradel, “Performance Issues and Optimizations in JavaScript:
An Empirical Study,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering. Florence, Italy: IEEE, 2015.

[59] Y. Yang, P. Xiang, M. Mantor, and H. Zhou, “Fixing performance bugs: An
empirical study of open-source gpgpu programs,” in 2012 41st International
Conference on Parallel Processing. IEEE, 2012, pp. 329–339.

[60] J. Garcia, Y. Feng, J. Shen, S. Almanee, Y. Xia, and a. Q. A. Chen,
“A comprehensive study of autonomous vehicle bugs,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering.
Seoul South Korea: ACM, Jun. 2020, pp. 385–396. [Online]. Available:
https://dl.acm.org/doi/10.1145/3377811.3380397

[61] Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug Characteristics in Blockchain
Systems: A Large-Scale Empirical Study,” in 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). Buenos Aires, Argentina:
IEEE, May 2017, pp. 413–424. [Online]. Available: http://ieeexplore.ieee.org/
document/7962390/

[62] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A Comprehensive Study
on Deep Learning Bug Characteristics,” arXiv, Tech. Rep. arXiv:1906.01388,
Jun. 2019, arXiv:1906.01388 [cs] type: article. [Online]. Available: http:
//arxiv.org/abs/1906.01388

[63] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and
P. Tonella, “Taxonomy of real faults in deep learning systems,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering.
Seoul South Korea: ACM, Jun. 2020, pp. 1110–1121. [Online]. Available:
https://dl.acm.org/doi/10.1145/3377811.3380395

[64] J. Cao, B. Chen, C. Sun, L. Hu, and X. Peng, “Characterizing Performance
Bugs in Deep Learning Systems,” arXiv, Tech. Rep. arXiv:2112.01771,
Dec. 2021, arXiv:2112.01771 [cs] type: article. [Online]. Available: http:
//arxiv.org/abs/2112.01771

[65] G. Long and T. Chen, “On Reporting Performance and Accuracy Bugs
for Deep Learning Frameworks: An Exploratory Study from GitHub,”
arXiv:2204.07893 [cs], Apr. 2022, arXiv: 2204.07893. [Online]. Available:
http://arxiv.org/abs/2204.07893

[66] M. Chabbi, K. Murthy, M. Fagan, and J. Mellor-Crummey, “Effective sampling-
driven performance tools for gpu-accelerated supercomputers,” in Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis, 2013, pp. 1–12.

[67] K. Zhou, M. W. Krentel, and J. Mellor-Crummey, “Tools for top-down
performance analysis of gpu-accelerated applications,” in Proceedings of the 34th
ACM International Conference on Supercomputing, ser. ICS ’20. New York,
NY, USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3392717.3392752

[68] B. Welton and B. Miller, “Exposing hidden performance opportunities in high
performance gpu applications,” in 2018 18th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2018, pp. 301–310.

[69] F. Schmitt, R. Dietrich, and G. Juckeland, “Scalable critical-path analysis and
optimization guidance for hybrid mpi-cuda applications,” The International Journal
of High Performance Computing Applications, vol. 31, no. 6, pp. 485–498, 2017.

[70] A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juckeland,
R. Dietrich, D. Poole, and C. Lamb, “Parallel performance measurement of
heterogeneous parallel systems with gpus,” in 2011 international conference on
parallel processing. IEEE, 2011, pp. 176–185.

https://ieeexplore.ieee.org/document/8816776/
http://ieeexplore.ieee.org/document/7180095/
https://dl.acm.org/doi/10.1145/3377811.3380397
http://ieeexplore.ieee.org/document/7962390/
http://ieeexplore.ieee.org/document/7962390/
http://arxiv.org/abs/1906.01388
http://arxiv.org/abs/1906.01388
https://dl.acm.org/doi/10.1145/3377811.3380395
http://arxiv.org/abs/2112.01771
http://arxiv.org/abs/2112.01771
http://arxiv.org/abs/2204.07893
https://doi.org/10.1145/3392717.3392752

	Introduction
	Methodology
	Dataset Preparation
	Collecting candidate performance commits
	Manual analysis of performance commits

	RQ1: Causes of Inefficiency
	Inefficient algorithm, data structure, computational kernel, and their implementation (IAD)
	Computationally expensive operation
	Redundant operations
	Unnecessary operations
	Inefficient data-structure

	Inefficient code for underlying micro-architecture (MA)
	Inefficiency due to memory/data locality
	Sub-optimal code generation by compiler

	Missing parallelism (MP)
	SIMD parallelism:
	GPU parallelism:
	Task parallelism

	Inefficient parallelization (PO)
	Inefficient Concurrency control (ICS)
	Inefficient memory management (IMM)
	Other forms of inefficiencies

	RQ2: Fixing Performance Inefficiency
	Micro-architecture specific optimization
	Data locality optimization

	Domain specific optimization
	Guiding the compiler for missed optimization
	Domain and architecture agnostic algorithm and data-structure optimization
	Introduce parallelism and Balancing parallel load
	Memory management
	Eliminate unnecessary synchronization/barrier

	RQ3: Bug Fixing Effort
	RQ4: Developer Expertise for Perf Bug Fix
	Threats to Validity
	Discussion
	Related Works
	Studies on performance bugs
	Analyzing performance bugs in HPC applications

	Conclusion
	References

