
CHANGE-AWARE BUILD PREDICTION MODEL FOR STALL AVOIDANCE IN
CONTINUOUS INTEGRATION

{ FOYZUL HASSAN AND XIAOYIN WANG}

ABSTRACT
Continuous Integration(CI) is a widely used development
practice where developers integrate their work after sub-
mitting code changes at central repository. CI servers usu-
ally monitor central repository for code change submis-
sion and automatically build software with changed code,
perform unit testing, integration testing and provide test
summary report. If build or test fails developers fix those
issues and submit the code changes. Continuous submis-
sion of code modification by developers and build latency
time creates stalls at CI server build pipeline and hence
developers have to wait long time to get build outcome.
In this paper, we proposed build prediction model that
uses TravisTorrent data set with build error log clustering
and AST level code change modification data to predict
whether a build will be successful or not without attemp-
ting actual build so that developer can get early build out-
come result. With the proposed model we can predict
build outcome with an average F-Measure over 87% on
all three build systems (Ant, Maven, Gradle) under the
cross-project prediction scenario.

CONTRIBUTIONS
We focused on Java projects using Ant,Maven and Gradle
build systems because they are supported by the Travis-
Torrent data set. Our evaluation results show that our mo-
del can achieve an average F-Measure of 87% on all three
build system for cross-project build-outcome prediction,
which is a very challenging but more realistic usage sce-
nario. Our work makes the following main contributions.

1. A statistic study of CI build status and time on the
TravisTorrent data set.

2. A build-outcome prediction model based on com-
bined features of the build-instance meta data and
code difference information of the commit.

3. A large-scale evaluation of our project with both
scenarios of cross-validation and cross-project pre-
diction on the TravisTorrent data set with more than
250,000 build instances.

TIME REQUIRED FOR BUILDING

Figure 1: Build Time
Median build execution time for errored status with Ant, Maven and Gradle build tool are 1,019, 955 and 352 seconds
respectively. For failed build status, the median execution time for Ant, Maven and Gradle are 981, 998, and 426 seconds,
respectively. Passed build execution time for Ant, Maven and Gradle are 1,090, 558 and 477 second respectively.

COMMIT TIME INTERVAL

0

20

40

60

80

100

0

20000

40000

60000

80000

100000

Commit Count Cumulative %

Figure 2: Commit Time Interval

19.54% code commits occurs within 500 seconds, 26.74%
of commits occurs within 1,000 seconds, and 54.53% of
commit occurs within 10,000 seconds.

BUILD STATUS CHANGE FREQUENCY

1

10

100

1000

10000

errored failed passed

lo
g 1

0(
co
un

t)

Figure 3: Build Status Statistics on Consecutive Build Sequence

For errored and failed build status, build outcome remains
unchanged with median of four build instances. For max-
imum case, 422 consecutive build was errored, while 760
consecutive build was failed.

OVERVIEW OF BUILD PREDICTION MODEL

Figure 4: Overview of Proposed System

FEATURE SELECTION

Feature Name Entropy
prev_bl_cluster 0.4812
prev_tr_status 0.4696
gh_team_size 0.0313
gh_src_churn 0.0078
prev_gh_src_churn 0.0059
cmt_buildfilechangecount 0.0058
cmt_importchangecount 0.0057
cmt_methodbodychangecount 0.0056
gh_test_churn 0.0056
prev_gh_test_churn 0.0055

Table 1: InfoGainAttributeEval Entropy for Top Ten Features

For feature selection we applied Information Gain Attri-
bute Evaluation on Ant, Maven and Gradle data set and
select those attributes having average entropy>0.005.

PERFORMANCE EVALUATION

Build Tool Precision Recall F-Measure
Ant 0.938 0.938 0.938

Maven 0.937 0.937 0.937
Gradle 0.921 0.922 0.921

Table 2: Performance Evaluation of Build Prediction Model

Ant and Maven average Precision, Recall and F-Measure
are above 0.93.While for Gradle, average precision, recall
and F-Measure is above 0.92.

Build Tool Precision Recall F-Measure
Ant 0.914 0.914 0.914

Maven 0.909 0.910 0.909
Gradle 0.872 0.873 0.872

Table 3: Cross Project Performance Evaluation

For Cross Project evaluation, the effectiveness of build
prediction models drop a bit, but for Ant and Maven it
can still predict build outcome with over 0.90 F-Measure.
For Gradle, our build prediction model can predict build
outcome with over 0.87 F-Measure.

CONCLUSION
We propose the scalable approach for predicting build
outcome in CI environment with evaluation on large scale
data. In future, we are planning to use build configuration
change type as feature for build outcome prediction mo-
del. Apart from that, different learning algorithms can be
used for better accuracy.

DATA SET
We studied TravisTorrent data set on Oct 27,2016. This
data set includes 402 Java projects with data for 256,055
build instances. Among this 256,055 build instances, the
Ant based build system is used for 104,417 cases, while
Maven and Gradle based build systems are used for
104,876 and 44,056 instances, respectively.


