
Taming Behavioral Backward Incompatibilities via
Cross-Project Testing and Analysis

Lingchao Chen

The University of Texas at Dallas

lxc170330@utdallas.edu

Foyzul Hassan

The University of Texas at San Antonio

foyzul.hassan@my.utsa.edu

Xiaoyin Wang

The University of Texas at San Antonio

Xiaoyin.Wang@utsa.edu

Lingming Zhang

The University of Texas at Dallas

lingming.zhang@utdallas.edu

ABSTRACT
In modern software development, software libraries play a cru-

cial role in reducing software development effort and improving

software quality. However, at the same time, the asynchronous

upgrades of software libraries and client software projects often

result in incompatibilities between different versions of libraries

and client projects. When libraries evolve, it is often very chal-

lenging for library developers to maintain the so-called backward

compatibility and keep all their external behavior untouched, and

behavioral backward incompatibilities (BBIs) may occur. In practice,

the regression test suites of library projects often fail to detect all

BBIs. Therefore, in this paper, we propose DeBBI to detect BBIs

via cross-project testing and analysis, i.e., using the test suites of

various client projects to detect library BBIs. Since executing all the

possible client projects can be extremely time consuming, DeBBI

transforms the problem of cross-project BBI detection into a tra-

ditional information retrieval (IR) problem to execute the client

projects with higher probability to detect BBIs earlier. Furthermore,

DeBBI considers project diversity and test relevance information

for even faster BBI detection. The experimental results show that

DeBBI can reduce the end-to-end testing time for detecting the first

and average unique BBIs by 99.1% and 70.8% for JDK compared to

naive cross-project BBI detection. Also, DeBBI has been applied to

other popular 3rd-party libraries. To date, DeBBI has detected 97

BBI bugs with 19 already confirmed as previously unknown bugs.

ACM Reference Format:
Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang. 2020.

Taming Behavioral Backward Incompatibilities via Cross-Project Testing

and Analysis. In 42nd International Conference on Software Engineering (ICSE
’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3377811.3380436

1 INTRODUCTION
As software products become larger and more complicated, library

code plays an important role in almost any software. For example,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00

https://doi.org/10.1145/3377811.3380436

while the sample Android app “Hello World" contains only several

lines of source code, when it is executed on an Android mobile

phone, it actually invokes libraries from the Android Software

Development Kit (SDK), Java Development Kit (JDK), as well as the

underlying Linux system. Third-party libraries such as Apache [14]

and Square [13] libraries are also widely used in both open source

and commercial software projects. The prevalent usage of software

libraries has significantly reduced the software development cost

and improved software quality.

At the same time, the asynchronous upgrades of software li-

braries and client software often result in incompatibilities between

different library versions and client software. As techniques of

computation evolve faster and faster, libraries are also upgraded

more frequently, so do the occurrences of software incompatibili-

ties. For example, Google releases a new major version of Android

averagely every 11 months. After each major release, an outbreak

of incompatibility-related bug reports will occur in GitHub, so do

the version-upgrade-related negative reviews in the Google Play

Market [56].

To avoid incompatibilities, for decades, “backward compatibility”

has been well known as a major requirement in the upgrades of

software libraries. However, in reality, “backward compatibility” is

seldom fully achieved, even in widely used libraries. Some early

research efforts (e.g., Chow and Notkin [31], Balaban et al. [26],

and Dig and Johnson [33]) have confirmed the prevalence of back-

ward incompatibility between two consecutive releases of soft-

ware libraries. More recently, Cossette and Walker [32] identified

334 signature-level backward incompatibilities in 16 consecutive

version pairs from 3 popular Java libraries: struts [5], log4j [12],

and jDOM [11]. McDonnell et al. [56] identified 2,051 changes

on method signatures in 13 consecutive Android API level pairs

from API level 2-3 to API level 14-15. These studies all show that

backward incompatibilities are prevalent. Furthermore, a recent

study [58] found averagely over 12 test errors / failures from each

version pair when performing cross-version testing on 68 consecu-

tive version pairs of 15 popular Java libraries. This fact shows that,

on top of signature-level backward incompatibilities, behavioral

backward incompatibilities that may cause runtime errors instead

of compilation errors are also prevalent.

Library incompatibilities may result in runtime failures both

during the software development phase and after the software

distribution. If the upgraded library is statically packaged in the

client software product, the client developers may face some test

112

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

https://doi.org/10.1145/3377811.3380436
https://doi.org/10.1145/3377811.3380436

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang

failures when they try to incorporate the new release of the li-

brary. Thus they must perform extra changes and bug fixes if they

want to take advantage of the new release of the library. In such

a case, client developers may not be affected because they can

still build the software product with the earlier library version.

The case becomes worse when the upgraded library belongs to

the runtime environment (e.g., operating system libraries, Java

runtime libraries, platform libraries for plug-ins such as Chrome/-

Firefox/Eclipse libraries). In such cases, a software user may simply

perform a system/platform update (the user may even not notice it

if she turns on automatic updates) during the night, and suddenly

find one or more software applications no longer working next

morning. For example, Windows Vista is considered to be not very

successful, and its failure has been largely ascribed to its backward

incompatibility with Windows XP [1]. More recently, an upgrade of

Android platform from 4.4 to 5.0 broke SougouInput, the most pop-

ular Chinese-input software with more than 200 million users [2].

Users could not input any Chinese character after they upgraded

to Android 5.0, until a patch was released 4 days later.

This paper proposes to apply cross-project testing and analysis

to overcome the challenges in BBI detection with the following

two insights. First, the large number of open source client software
projects residing in open software repositories can serve as a natural
knowledge base of common usage scenario and expected semantics
of software library APIs. Second, it is difficult for natural language
documents (e.g., release notes) to achieve comprehensiveness and pre-
ciseness in describing semantic changes of library APIs. In contrast,
code (including library and client code, source and test code) can be
better media to transfer knowledge from the library side to the client
side. In particular, to avoid BBI-related software runtime failures,

to accelerate software upgrading process, and to reduce developer’s

effort in software migration, we propose DeBBI to detect BBIs on

library side. Simple cross-version regression testing with built-in

library test code may miss a lot of BBIs. For better detection of

BBIs, DeBBI leverages the large number of existing client software

projects in open software repositories, and performs large-scale

testing on these projects with their built-in test code on the newer

library version. Such largely expanded test suites may incur high

costs. Therefore, we propose to transform the problem of cross-

project BBI detection into a traditional information retrieval (IR)

problem. More specifically, we treat the library-side API upgrades

as the query, and the project-side usage of the library APIs as the

document collection. Then, the projects with more intensively up-

graded API uses will be prioritized for early execution to detect

potential BBIs faster. Also, different projects may share similar API

uses and thus detect similar BBIs. Thus, we further consider the

diversity between client projects using the diversified Maximal

Marginal Relevance (MMR) technique [30]. Finally, for each client

project, we also optimize test executions by skipping the tests that

may not touch the upgraded APIs. The paper makes the following

contributions:

• Idea. We propose to solve the BBI detection problem via

cross-project testing and analysis, and further transform the

problem into a traditional IR problem.

Figure 1: DeBBI structure

• Implementation. We implement the proposed approach

for testing library BBIs based on the ASM bytecode analysis

framework [6] and the Indri IR framework [8].

• Optimization.We further propose to use MMR to consider

the diversity of different client projects, and also extend tra-

ditional static regression test selection to the cross-project

scenario to automatically skip the tests useless for BBI de-

tection.

• Study. We present an extensive study on testing JDK and

other popular 3rd-party library (such as Apache libraries) up-

grades using tens of thousands of GitHub client Java projects.

The experimental results show that DeBBI can reduce the

end-to-end testing time for detecting the first and average

BBI clusters by 99.1% and 70.8% for JDK, and detect 97 real

BBI bugs (19 has been confirmed as previously unknown

bugs).

2 APPROACH
In this section, we first present the overview of our DeBBI approach

(Section 2.1). Then, we illustrate how to apply IR techniques for

efficient and effective BBI detection (Section 2.2). Finally, we present

how to extend traditional Regression Test Selection (RTS) to the

cross-project setting to further speed up DeBBI (Section 2.3).

2.1 Overview
Our DeBBI is a general approach for taming BBIs via cross-project

testing, and can be applied to any library, including Android Soft-

ware Development Kit (SDK) [4], Java Development Kit (JDK) [9],

and third-party libraries such as Apache Software [14]. Figure 1

shows the overall architecture of our DeBBI. DeBBI takes two ver-

sions of the library under test and a set of client projects that directly

use the library as input to find BBIs. DeBBI first extracts the changes

(e.g., file changes) among the two library versions via static analysis.

They are considered as queries in our IR model. Meanwhile, DeBBI

preprocesses the source code for all the client projects to obtain

the library APIs used by each project, and uses that to serve as

the document for each project during IR. Then, DeBBI queries the

library changes against the source code for all the client projects,

113

Taming Behavioral Backward Incompatibilities via Cross-Project Testing and AnalysisICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

so that the client projects accessing more changed APIs are tested

earlier to detect BBIs faster.

Following prior work [53, 55, 71, 87], we performed stop word

removal [40], stemming [62] for the IR document preparation. Note

that we use all Java key words as our stop word since they are

common for all Java projects. For each client project, we consider

the class/file-level dependencies on the library under test as the

document contents. For each class/file, we split its fully-qualified

name into different words in the document or query. For example,

we split java.lang.String into java, lang and String. These
three words are all fed into our document or query. To ensure

DeBBI effectiveness and efficiency, we further explore various IR

models in this work, including traditional and topic-model-based

IR models (Details shown in Section 2.2). Furthermore, the client

projects ranked high in the prioritization results may reveal similar

or even the same BBIs. Therefore, we further consider the diversity

of the IR results to detect different unique BBIs faster. To this end, we
further use the Maximal Marginal Relevance (MMR) algorithm [30]

to rank client projects with diverse library API uses.

IR models can help greatly reduce the number of client projects

for finding BBIs. However, for each client project, all its tests are still

executed. Therefore, in Section 2.3, we further use static analysis

to compute the library APIs reachable from each test, and then

compute the subset of tests which can potentially access changed

library APIs as affected tests. In this way, for each client project, we

only execute the affected tests to further speed up BBI detection.

2.2 DeBBI via Information Retrieval
Various IR models have been applied to solve software engineering

problems, such as the Vector SpaceModel (VSM) [73], Latent Seman-

tic Indexing (LSI) [47], and Latent Dirichlet Allocation (LDA) [27].

In theory, any IR model can be applied to DeBBI. In this work, we

mainly consider two widely used IR models, VSM and LDA, due

to their effectiveness [49, 83]. For each model, we studied state-of-

the-art variants for effective BBI detection. Furthermore, for each

studied variant, we further apply the Maximal Marginal Relevance

(MMR) algorithm [30] to rank client projects with diverse library

API uses.

2.2.1 Vector Space Model. Vector Space Model (VSM) [73] is

an algebraic model for representing text documents and queries

as vectors of indexed terms. TF.IDF (short for Term Frequency-

Inverse Document Frequency) is a numerical statistic widely used

to reflect word importance for a document under VSM. To date,

TF.IDF and its variants (e.g., state-of-the-art Okapi BM25 [68]) have

been widely recognized as robust and effective IR models [67].

Therefore, it has been widely studied and used in both IR and

software engineering areas [60, 74, 81, 84]. Formally, assume that

each document and query are represented by a term frequency

vector
®d and ®q respectively, and n is the total number of terms or

the size of vocabulary:

®d = (x1,x2, . . . ,xn) (1)

®q = (y1,y2, . . . ,yn) (2)

Element xi and yi are the frequency of term ti in document
®d and

query ®q respectively. Generally, query and document terms are

weighted not just by their raw frequencies. There is a heuristic

TF.IDF weighting formula to weight query and document term fre-

quency (TF). Also, the inverse document frequency (IDF) is used to

increase the weight of terms with low frequencies in the document

and diminish the weight of terms which have high frequencies.

Weighted vectors for
®d and ®q are computed as:

®dw = (t fd (x1)idf (t1), t fd (x2)idf (t2), . . . , t fd (xn)idf (tn)) (3)

®qw = (t fd (y1)idf (t1), t fd (y2)idf (t2), . . . , t fd (yn)idf (tn)) (4)

Given a set D of source files for the client projects considered by

DeBBI, the simplest and classic TF formulation just uses the raw

count of each term in the document, i.e., the number of times that

term t occurs in a document, which is given by ft,d . Similarly, one

simplest way to calculate IDF is given by id f (t) = log
N
nt , where nt

is the number of documents with term t and N is the total number

of documents in document collection D. Thus, one of the simplest

ways to get TF.IDF score is to just multiply ft,d and log
N
nt to get

term t ’s score in document
®d , and then compute the vector similarity

with query ®q to get document
®d’s priority.

As we mentioned before, various TF.IDF variants have been pro-

posed in practice. In this work, we use the Indri [8] framework,

which includes various advanced algorithms to achieve more ac-

curate models. The Indri’s TF.IDF variant is based on Okapi BM25,

which is a probabilistic retrieval framework model initially devel-

oped by Robertson et al. [68]. As to avoid division by zero, when

a particular term appears in all documents, the IDF value here is:

id f (t) = log
N+1
nt+0.5 . Meanwhile, the TF value is:

t fd (x) =
k1x

x + k1(1 − b + b lend
lenD

)
(5)

There are two tuning parameters k1 and b. k1 is used to calibrate

document term frequency scaling. When k1 is just a small value, the

term frequency value will quickly saturate; on the contrary, a large

k1 value corresponds to using raw term frequency. b(0 ≤ b ≤ 1)
is used to determine the scaling by document length. When value

b is 1, it corresponds to fully scaling the term weight by the docu-

ment length, while b = 0 corresponds to no length scaling. Finally,

lend and lenD represent the current document length and average

document length for the entire document collection, respectively.

Meanwhile, for the query’s TF function, the length normalization

is unnecessary because retrieval is applied with respect to a single

fixed query. Therefore, we just set b as 0 here:

t fq (y) =
k3y

x + k3
(6)

Thus, the similarity score of document
®d against query ®q is:

S(®d, ®q) =
n∑
i=1

t fd (xi)t fq (yi)id f (ti)2 (7)

There are various configurations that we can choose in the Indri

framework. One of them is the basic TF.IDF variant using BM25TF

term weighting. It sets k3 as 1000 in the equation 6. The only two

parameters left for tuning are k1 (for term weight) and b (for term

weight). We directly use their default values, i.e., 1.2 and 0.75, re-

spectively. Another variant is Okapi, which performs retrieval via

Okapi scoring. There are three parameters k1 (for term weight), b

114

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang

(for term weight), and k3 (for query term weight) in the variant.

The default value of them are 1.2, 0.75 and 7 respectively. We also

use these default values in our experiment. In this work, we use

both models and denote them as TF.IDF and Okapi, respectively.

2.2.2 Latent Dirichlet Allocation. Different from VSM that di-

rectly represents documents with indexed terms, LDA further im-

plements topic modeling in the retrieval process and computes

generative statistical models to split a set of documents into corre-

sponding topics with certain probabilities. In this way, each doc-

ument is represented by the set of relevant abstract topics rather

than the raw indexed terms. In the software engineering literature,

researchers have applied LDA to deal with bug localization [87],

software categorization [80], or software repository analysis [76].

In those prior work, project source code is usually treated as LDA

input documents. In contrast, in this work, DeBBI treats each client

project’s class-level dependency on the library under test as LDA

input documents. Based on the input documents, LDA computes

different topics for each of the client projects. The different topics

indicate that there are different clusters of projects. When projects

use very similar library APIs, they are assigned into similar topics.

Figure 2 shows the graphical model of LDA. The outer box D
represents the documents. The inner boxT represents the repeated

choice of topics and words in a document. The generative process

of model can be described as follows:

(1) Choose T ∼ Poisson(ϵ)
(2) Choose a topic vector θ ∼ Dir(α) for document D
(3) For each of the T termswi :

(a) Choose a topic zj ∼Multinomial(θD)
(b) Choose a termwi from p(wi |zj , β)

For here,α is a smoothing parameter for document-topic distribu-

tions, and β is a smoothing parameter for topic-term distributions.

The multinomial probability function p is:

p(θ , z,w |α , β) = p(θ |α)
T∏
n=1

p(zn |θ)p(wn |zn , β) (8)

Figure 2: Graphical
model for LDA

In this way, given a set of client

projects, we first generate a term-by-

document matrix ®M . Then we use

wi j to represent the weight of ith
term in the jth document. Note that

following prior work [41, 45], we

take TF.IDF as our weighting func-

tion, which can give more impor-

tance to words with high frequency

in the current document and appear-

ing in a small number of documents.

LDA further takes the ®M as input, and produces a topic-by-

document matrix ®R. For here, the probability that the jth document

belongs to the ith topic is denoted by Ri j in this matrix. Because

the number of topics is much smaller than the number of indexed

terms in the corpus. LDA is mapping a high-dimensional space of

documents into a low-dimensional space (represented using topics).

The latent topics can be clustered by shared topics.

In the implementation, we apply the fast collapsed Gibbs sam-

pling generative model [61] for LDA. The reason is that it is much

faster and has the same accuracy compared against the standard

LDA implementation [27]. There are the following parameters in

the model which may affect its performance:

• t , which is the number of topics in the result. Follow the prior

work [25], we set topic number as 10 in our experiment.

• n, which denotes the number of Gibbs iterations to train our

model. And we set it as 10000 in the experiment following

prior work [65].

• α , which influences the topic distributions per document.

The topics will have a better smoothing effect when the α
value is higher. We use the default value of 5.5.

• β , which influences the term’s distribution per topic. The

distribution of terms per topic will be more uniform with a

higher β value. We use the default value of 0.01.

2.2.3 MaximalMarginal Relevance. Both the VSM and LDA tech-

niques above will aggressively rank themost relevant client projects

high in the list. However, the highly ranked projects may access

similar library APIs and reveal the same BBIs repetitively. Therefore,

in this work, we further consider the diversity among the search

results to detect different unique BBIs faster. More specifically, we

combine both VSM and LDA models with Maximal Marginal Rel-

evance (MMR) [30] to solve this diversity issue to explore their

performance. MMR has been widely studied in the IR community

for diversified searching [38, 39, 43, 48]. Traditional IR models rank

the retrieved documents in the descending order of relevance to

the user’s query. In contrast, MMR tries to measure relevance and

novelty independently and consider them together via a linear com-

bination to solve the diversity problem. For example, it maximizes

marginal relevance in retrieval and summarization when a docu-

ment is both relevant to the query and contains minimal similarity

to the previously ranked documents. The MMR score equation can

be formally defined as:

Arд max

di ∈D\S
[λ(Sim1(di ,q) − (1 − λ)max

dj ∈S
Sim2(di ,dj))] (9)

where D is the document collection (i.e., the set of considered client

projects for testing a library using DeBBI) and q is the query (i.e.,

the changes among different library versions). S is the subset of

documents which are already selected by IR. D \ S is the set of not

yet selected documents in D. Sim1 and Sim2 are the methods to

measure similarity between documents and query. They can be

the same or different. For here, we uniformly use BM25 [82] as

our similarity calculation method. In the above definition, when

parameter λ = 1, MMR gives us a standard relevance-ranked list. On

the contrary, when λ = 0, MMR gives us a maximal diversity result.

In addition, the sample information space is around the query when

λ is a small number, whereas the larger value of λ will produce a

result focusing on multiple potentially overlapping or reinforcing

relevant documents. In our experiment we set λ as 0.5 which gives

documents and queries the same weight.

2.3 Faster DeBBI via Testing Selection
Since the basic DeBBI only ranks client projects, all the tests within

each tested projects still have to be executed. Therefore, we further

115

Taming Behavioral Backward Incompatibilities via Cross-Project Testing and AnalysisICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

extend DeBBI to reduce the number of test executions within each

project. More specifically, we extend the traditional Regression Test

selection (RTS) approach [69] to further enable even faster BBI

detection. To date, various static and dynamic RTS techniques have

been proposed in the literature [36, 37, 50, 75, 86]. In this work,

we build DeBBI on top of state-of-the-art static RTS technique

STARTS [50]. We chose STARTS since it has been demonstrated

to be state-of-the-art static file-level RTS technique and can be

competitive to state-of-the-art dynamic RTS technique Ekstazi [37].

Also, STARTS does not require prior dynamic execution informa-

tion for each client project, which may not be available during BBI

detection. STARTS is based on the traditional class firewall anal-

ysis firstly proposed by Leung et al. [46, 51]. To further consider

the specific features of the Java programming language, STARTS

performs class firewall analysis on the Intertype Relation Graph

(IRG) defined by Orso et al. [59]. The following presents the formal

definition:

Definition 2.1 (Intertype Relation Graph). The intertype
relation graph of a given Java program can be formulated as a triple
⟨ε,Ni ,Nu ⟩. In the triple, N denotes the set of nodes representing
all programs’ classes or interfaces. εi ⊆ N × N denotes the set of
inheritance edges. There exists an inheritance edge ⟨n1,n2⟩ ∈ εi if
type n1 inherits from class n2, or implements interface n2. εu ⊆ N ×N
denotes the set of use edges. There exists an edge ⟨n1,n2⟩ ∈ εu if type
n1 accesses any element of n2, e.g., field references and method calls.

There are two inputs for STARTS to select affected tests: (1)

the set of changed files during software evolution, (2) the static

dependency for each test computed based on the IRG graph, i.e.,

the files that can potentially be reachable from each test based on

IRG. Then, STARTS computes all files that can potentially reach

the changed files within the class firewall, and all tests within the

firewall will be selected for execution. Formally, the class firewall

can be computed as:

Definition 2.2 (Class Firewall). The class firewall for a set of
changed types τ ⊆ N is computed over the IRG ⟨N , εi , εu ⟩ using as the
transitive closure computation: f irewall(τ) = τ ◦ E∗

, where ◦ is the
relational product, ∗ denotes the reflexive and transitive closure, and
E denotes the inverse of all use and inheritance edges, i.e., (εi ∪ εu)−1.

Note that the prior STARTS approach only analyzes the nodes

within a project (ignoring all third-party and JDK libraries). On

the contrary, in this work, we explicitly consider library changes,

and aim to select the tests affected by library changes. Therefore,

we augment the STARTS analysis to include library nodes. Note

that (1) DeBBI only considers the nodes for the client projects and

the library under test, and ignores all the other library nodes, and

(2) DeBBI only considers the library nodes directly reachable from

client projects. The reason is that the nodes for other libraries

are not of interest, and the library nodes not directly reachable

from the client projects may not have clear impact on the current

project. For example, when applying DeBBI to detect JDK BBIs,

we don’t consider the third-party library dependencies and only

collect the source code and test code JDK dependencies through

jDeps [10]. Then we set the changed JDK library files as our code

changes for test selection. Note that, we further filter out the top

200 most widely used JDK files, such as java.lang.String and

Figure 3: Example IRG

java.util.List. The reason is that these files are almost used by

all projects/tests and cannot help much in test selection. Note that

we empirically validated that after filtering these JDK classes, our

test selection is still safe, i.e., not missing any unique BBI.

Figure 3 illustrates how we adapt RTS for detecting BBIs for JDK.

In the example IRG, the inheritance and use edges are marked with

label "i" and "u". L denotes a third-party library node, which uses

JDK node JDK5; C is a client project node which inherits library

L and uses JDK1 and JDK2. There are three tests T1, T2 and T3
all using JDK3. According to our approach, we do not consider

the dependencies of third-party library, and thus JDK5 will not be

considered in our dependency result (pruned by red cross mark). In

addition, we just consider one layer JDK dependency. For example,

we only collect JDK dependencies of C , T1, T2 and T3. We do not

consider the further dependencies of JDK1, JDK2, JDK3 and JDK4.

From the figure, T2 uses client C and T3 uses JDK4, respectively.

JDK1, JDK3 and JDK4 are the changed JDK classes (marked with

gray shadow). Note that JDK3 is one of the 200 most commonly

used JDK class, and it will not be considered in JDK diff results as

discussed before (marked with dashed oval). In this way, T2 can
potentially reach JDK1 and T3 is using changed class JDK4. Thus,

T2 and T3 are affected tests in our RTS technique, marked within

the dashed area (i.e., our class firewall).

3 EXPERIMENTS AND ANALYSIS
In this section, we first described our dataset for detecting JDK BBIs

(Section 3.1), followed by our evaluation environment (Section 3.2),

evaluation metrics (Section 3.3), research questions (Section 3.4),

and results (Section 3.5). Finally, we discuss the threats to validity

in Section 3.6.

3.1 Dataset
To construct the dataset for detecting JDK BBIs, we first collect all

the most-forked Java projects with over 20 forks from the GitHub

repository. It returns a collection of 8,481 unique Java projects. In

these resulting projects, 4,928 of them support the Maven build

system. Finally, we use all the 2,953 remaining projects can pass

the build and test phases successfully under JDK 8 as the dataset

for this study.

Table 1 describes the dataset in more details. In particular, the

number of Java source files in a project ranges from 1 to 12,979,

and the number of test cases in a project ranges from 0 to 665,028.

The average number of Java source files and the average number of

test cases are 130.37 and 329.68, respectively. Since we would like

to find BBI issues for different versions of JDK, the same dataset is

applied to build and test with different JDK versions.

116

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang

Table 1: Dataset summary
Description Min Max Avg.

Number of Java Files per Project 1 12979 130.37

Number of Test Cases per Project 0 665028 329.68

3.2 Experiment Settings
To perform our experiment, we need a set of confirmed JDK BBI

bugs as ground truth. We use the dataset described in Section 3.1

to detect such confirmed BBI bugs. The intuition is that, we can

confirm a BBI bug by checking whether it is fixed in the later

versions of JDK. If a test case passes in JDK 8 but fails in JDK 9.0.0,

then it reveals a BBI between JDK 8 and 9.0.0. However, we are

not sure whether this BBI is an intended behavior change by JDK

developers or a BBI bug. To confirm that such a BBI is a BBI bug,

we further run the test case on 9.0.1, and if the BBI disappears,

we confirm that the test failure in JDK 9 reveals a BBI bug. To

categorize duplicated BBI bugs, we manually cluster all the reported

BBIs caused by the same root issues to identify unique BBI bugs. In

this way, we define every reported BBI as a raw BBI bug and every

clustered BBI as a unique BBI bug. Note that we consider both raw

and clustered bugs to better measure DeBBI effectiveness.

When performing the build and testing, we use Maven 3.3.9

to build and test each project. For the JDK version, We use JDK

8.0.161, 9.0.0 and 9.0.1. We use a computer with Intel(R) Xeon(R)

CPU 2.60GHz with 528GB of Memory, and Ubuntu 16.04.3 LTS

operating system.

3.3 Evaluation Metrics
We use each of the following three metrics to evaluate the number

of projects tested, the number of test executions and time taken to

identify BBIs:

• First: This metric reports the number of client software

projects tested, the number of tests executed, or time (in

second) taken to identify the first BBI bug. This metric em-

phasizes fast detection of the first BBI, which is essential for

the developers to start debugging earlier.

• Average: This metric is the average number of client soft-

ware projects tested, tests executed, or average time taken

to find each BBI. This metric emphasizes fast detection of

BBIs in average cases.

• Last: Like the First metric, this metric reports the number

of client software projects evaluated, the number of tests

executed and time taken to identify the last BBI. This metric

emphasizes fast detection of all BBIs.

3.4 Research Questions
We seek to answer following four research questions:

• RQ1: Is DeBBI more effective than random project prioriti-

zation in identifying BBI issues?

• RQ2: How does diversity resolution technique help improve

the performance of DeBBI?

• RQ3: Can we further boost DeBBI via extending traditional

static Regression Test Selection (RTS)?

• RQ4:Howdoes DeBBI perform in case of parallel execution?

• RQ5: Can DeBBI be generalized to other popular 3rd-party

libraries besides JDK?

3.5 Results
RQ1: Basic DeBBI vs. Random Project Prioritization. To eval-
uate DeBBI on detecting BBIs for JDK, we compared the basic

IR-based DeBBI with the Random technique, which randomly sorts

client projects to identify BBIs. Also, the Random technique results

are averaged over 5 runs to isolate the impact of random factors.

We compared our results with the Random technique from three

aspects: i) effectiveness in the number of tested client software

projects, ii) effectiveness in the number of executed tests, and iii)

effectiveness in test execution time. For each aspect, we measure

the First, Average, and Last metrics of both the Random and our

IR-based techniques. The results are presented in Table 2. In the left

half of the table, we present the First, Last, and Average values
on client software projects, test executions, and execution time

without bug clustering. The values in the bracket are the relative

reduction for the corresponding metrics compared with the Ran-

dom technique. The best technique for each metric has also been

marked in gray.

We have following observations for the bugs without clustering:

First, all IR-based techniques perform much better than Random

technique on the First values, with mostly 60% to 90% reduction

on all three aspects. However, if we consider Average and Last
values, the enhancement of IR-based techniques is not that signifi-

cant, especially for execution time. This can be due to the lack of

diversity in IR-based prioritization results. Second, there is none

IR-based technique that outperforms all other techniques, but LDA

is performing better (with 4.7% to 82.3% reduction) than Random

technique on all values from all aspects.

As same BBI bugs can appear in multiple projects and test cases,

we also performed BBI clustering to check how different techniques

compare on identifying different unique BBI bugs. The right half of
Table 2 shows the effectiveness of IR based techniques and Random

technique on unique BBI bugs. The data presentation is the same

as the left half. We have similar observations compared with left

half of the table: IR-based techniques perform much better on First
values, but not so good on Last and Average values. Furthermore,

in general, IR-based techniques perform better than the Random

technique on all values in test execution time for unique BBI bugs.

The reason is that for unique BBI bugs DeBBI only need to find

the first raw BBI bug in each cluster, making it easier for IR-based

DeBBI to find unique BBI bugs faster.

RQ2: Diversity Enhancement. To check whether diversity en-
hancement techniques such as Maximal Marginal Relevance (MMR)

can enhance IR-based project prioritization, we combine MMR with

all IR-based techniques TF.IDF, Okapi and LDA. Table 3 shows the

effectiveness of MMR-integrated IR-based techniques. From the

table, we can see that although MMR is not very helpful on some IR

techniques (TF.IDF and Okapi) in all aspects, it is able to enhance

the LDA-based technique significantly. LDA+MMR outperforms all

other techniques on almost all values from all aspects. Comparing

with results in Table 2, we can see that MMR technique can enhance

LDA-based technique on five of nine evaluated metrics without

bug clustering and seven of nine metrics with bug clustering. In

particular, when it comes to with bug clustering, LDA+MMR is able

to reduce 99.1%, 59.0%, and 65.4% of test execution time to detect

117

Taming Behavioral Backward Incompatibilities via Cross-Project Testing and AnalysisICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 2: Effectiveness of the basic DeBBI
Without Bug Clustering With Bug Clustering

Client Software Projects Test Case Execution Time(sec) Client Software Projects Test Case Execution Time(sec)
First Last Average First Last Average First Last Average First Last Average First Last Average First Last Average

Random 63 2702 1607 1253 961050 776892 1494.97 109005.21 73360.5 63 2402 1663 1253 947219 758567 1494.97 103965.45 76463.23

TF.IDF

3
(95.2%)

2487

(8.0%)

1322
(17.7%)

32
(97.4%)

964053

(-0.3%)

399301

(48.6%)

53.9
(96.4%)

110727.5

(-1.6%)

77340.8

(-5.4%)

3
(95.2%)

1901

(20.9%)

1135

(31.7%)

32
(97.4%)

948943

(-0.2%)

413608

(45.5%)

53.9
(96.4%)

88637.3

(14.7%)

67582.5

(11.6%)

Okapi

5

(92.1%)

2379
(12.0%)

1375

(14.4%)

48

(96.2%)

962737

(-0.2%)

457375

(41.1%)

91

(93.9%)

109132.7

(-0.1%)

74956.7

(-2.2%)

5

(92.1%)

1888
(21.4%)

982
(41.0%)

48

(96.2%)

949122

(-0.2%)

241894

(68.1%)

91

(93.9%)

87215.6
(16.1%)

60150.7
(21.3%)

LDA

43

(31.7%)

2445

(9.5%)

1532

(4.7%)

573

(54.3%)

727141
(24.3%)

167110
(78.5%)

263.9

(82.3%)

94113.1
(13.7%)

48290.1
(34.2%)

43

(31.7%)

2332

(2.9%)

1747

(-5.1%)

573

(54.3%)

711989
(24.8%)

108083
(85.8%)

263.9

(82.3%)

90799.8

(12.7%)

64822.2

(15.2%)

the First, Last, and Average unique BBI bugs, which is a huge

enhancement over the Random technique.

RQ3: Static Regression Test Selection (RTS).When a library

gets updated, not all the tests from its client projects are affected

by the library code changes. If we can remove such irrelevant test

cases, we may further enhance the reduction on the number of test

executions and execution time. Therefore, we further exclude the

test cases that will not be affected by JDK code changes via RTS. The

results of techniques with RTS combined are presented in Table 4,

where the Random technique is used as the baseline for compar-

ison. From the table, we can see that, with RTS combined, even

Random+RTS also achieves good effectiveness (average execution

time reduced from more than 70K seconds to about 41K seconds);

meanwhile, DeBBI models tend to have even larger improvements.

In addition, on detecting clustered unique BBI bugs, the LDA+MMR

technique, which has achieved best effectiveness without RTS, still

achieves significant enhancement over the Random technique when

RTS is combined. Specifically, LDA+RTS can achieve 63.2% reduc-

tion on detecting raw BBI bugs and LDA+MMR+RTS can achieve

70.8% reduction on detecting unique BBI bugs compared with the

Random technique on Average execution time. In other words,

DeBBI can save 1017.1 hours to find all raw BBI bugs and 120.4

hours to find all unique BBI bugs.

In reality, detecting a new unique BBI bug is apparently more

important than finding another instance of a known BBI bug. There-

fore, we believe LDA+MMR+RTS is the best technique that we

recommend to be used by default in reality. To make it more con-

venient to check the necessity of each used component (i.e., LDA,

MMR, and RTS) compared to baseline techniques, we present the

comparison among four selected techniques: Random technique,

LDA, LDA+MMR, and LDA+MMR+RTS on clustered unique BBIs

in Figures 4 to 6.

In particular, Figure 4 compares all four techniques on their

First, Last, and Average values on the number of client project

executions. Figure 5 and Figure 6 present similar comparison on the

number of test executions and execution time. As shown in Figure 4,

for prioritization of the client software projects, since RTS does

not optimize project selection, LDA+MMR and LDA+MMR+RTS

show same effectiveness. However, if we compare LDA+MMR+RTS

with Random approach, it shows 98.4% 57.2% and 63.0% reduction

on First, Last, and Average values respectively over the Random

technique. As shown in Figure 5, from the aspect of test cases,

LDA+MMR+RTS achieves 99.9%, 97.6%, and 97.6% for First, Last,
and Average values over Random technique. As shown in Figure 6,

from the aspect of execution time, LDA+MMR+RTS achieves 99.1%,

68.0%, and 70.8% reduction First, Last, and Average values over
Random technique.

RQ4: DeBBI Effectiveness for Parallel Execution. We fur-

ther utilized the multiprocessing package of Python for parallel

project execution. We used Python Pool to control the different

processes to start or join in the main process and used Manager
and Queue to control the shared resource between processes. In our

experiments, the ranked project list from our IR-based result is the

shared resource. Sub-processes try to get the project from queue

and run it. As soon as one process finishes execution, it starts to get

the next one to run. Here, we use 5 sub processes in our experiment

to evaluate our technique. Table 5 shows the results of DeBBI with

and without bug clustering during parallel execution. The left part

is the execution time without bug clustering and right part is the

execution time with bug clustering. Column 1 list all techniques.

Columns 2-7 list First, Last and Average value of execution time

to find raw BBI bugs and unique BBI bugs respectively. We use the

Random technique with multiprocessing as our baseline technique.

From the results, we can see that TF.IDF with MMR, Okapi and LDA

with MMR all can find first raw BBI bug and unique BBI bug in 12.7

seconds with the 84.7% reduction compared to Random. LDA has

the best performance in Last and Average with 11.8 % and 38.4 %

reduction without bug clustering. Meanwhile, TF.IDF with MMR

has the best performance in Last andAveragewith 80.9 % and 63.2

% reduction with bug clustering.

Table 6 shows the results when combining our IR-based tech-

niques with RTS during parallel project execution. We still use the

Random technique with multiprocessing as our baseline to check

the results. From the results, all techniques combined with RTS can

have a huge enhancement in Last and Average value of execution
time. The reason LDA+RTS is better than Random in First is that
RTS does not have too much help here. Random and most tech-

niques can find first bug fast without RTS and executing RTS needs

extra overhead
1
. Thus, the performance of First is not very good

here. However, LDA+MMR+RTS is able to have 71.4 % and 83.1

% reduction in Last without and with bug clustering. LDA+RTS

can have 64.4 % and 60.8 % average time reduction to find raw BBI

bugs and unique BBI bugs. To sum up, LDA+MMR+RTS is still one

of the most effective techniques in the setting of parallel project

execution. It can save 129.3 hours to find all raw BBI bugs and 9.9

hours to find all unique BBI bugs compared to Random technique

with parallel execution.

RQ5: DeBBI Application to Other Libraries. Besides JDK,
we further use other popular libraries to thoroughly evaluate the

performance of our approach. For this experiment, we cloned all

Maven-based Java projects that are created between August 2008

and December 2019 on GitHub with at least one star, and finally

included 56,092 unique projects that can successfully pass the build

1
Note that all the RTS overhead costs, including computing dependencies and per-

forming RTS analysis, are considered in the our DeBBI time measurement.

118

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang

Table 3: Effectiveness of DeBBI with MMR
Without Bug Clustering With Bug Clustering

Client Software Projects Test Case Execution Time(sec) Client Software Projects Test Case Execution Time(sec)
First Last Average First Last Average First Last Average First Last Average First Last Average First Last Average

Random 63 2702 1607 1253 961050 776892 1494.9 109005.2 73360.5 63 2402 1663 1253 947219 758567 1494.9 103965.5 76463.2

TF.IDF+MMR

28

(55.6%)

2404

(11.0%)

1306

(18.7%)

5791

(-362.2%)

961604

(-0.1%)

515462
(33.7%)

4104.5

(-174.6%)

109603.5

(-0.5%)

79052.8

(-7.8%)

28

(55.6%)

1591

(33.8%)

867

(47.9%)

5791

(-362.2%)

944968

(0.2%)

369206
(51.3%)

4104.5

(-174.6%)

85428.7

(17.8%)

59618.8

(22.0%)

Okapi+MMR

25

(60.3%)

2398

(11.3%)

1324

(17.6%)

5759

(-359.6%)

963338

(-0.2%)

559859

(27.9%)

4057.2

(-171.4%)

109540.7

(-0.5%)

81400.4

(-11.0%)

25

(60.3%)

1672

(30.4%)

878

(47.2%)

5759

(-359.6%)

949900

(-0.3%)

450257

(40.6%)

4057.2

(-171.4%)

86264.9

(17.0%)

59906.6

(21.7%)

LDA+MMR

1
(98.4%)

2340
(13.4%)

1243
(22.7%)

1
(99.9%)

959254
(0.2%)

759536

(2.2%)

12.7
(99.1%)

105832.7
(2.9%)

55970.2
(23.7%)

1
(98.4%)

1029
(57.2%)

616
(63.0%)

1
(99.9%)

931735
(1.6%)

553400

(27.0%)

12.7
(99.1%)

42645.6
(59.0%)

26433.9
(65.4%)

Table 4: Effectiveness of DeBBI with RTS
Without Bug Clustering With Bug Clustering

Test Case Execution Time(sec) Test Case Execution Time(sec)
First Last Average First Last Average First Last Average First Last Average

Random 1253 961050 776892 1494.9 109005.2 73360.5 1253 947219 758567 1494.9 103965.5 76463.2

Random+RTS

337

(73.1%)

27016

(97.2%)

14402

(98.1%)

1257.5

(15.9%)

71083.7

(34.8%)

40856.8

(44.3%)

337

(73.1%)

23985

(97.5%)

15039

(98.0%)

1257.5

(15.9%)

62587.8

(39.8%)

41810.2

(45.3%)

TF.IDF+RTS

6

(99.5%)

28013

(97.1%)

21564

(97.2%)

303.6

(79.7%)

74613.8

(31.6%)

52714.6

(28.1%)

6

(99.5%)

27021

(97.1%)

18918

(97.5%)

303.7

(79.7%)

67659.2

(34.9%)

46428.2

(39.3%)

TF.IDF+MMR+RTS

1474

(-17.6%)

27987

(97.1%)

23073

(97.0%)

3260.2

(-118.1%)

74642.2

(31.5%)

54315.2

(26.0%)

1474

(-17.6%)

26298

(97.2%)

18922

(97.5%)

3260.2

(-118.1%)

63198.1

(39.2%)

41769.4

(45.4%)

Okapi+RTS

2

(99.8%)

27719

(97.1%)

22009

(97.2%)

82.9
(94.5%)

98866.6

(9.3%)

76910.7

(-4.8%)

2

(99.8%)

26787

(97.2%)

17881

(97.6%)

278.3

(81.4%)

66228.2

(36.3%)

43050.3

(43.7%)

Okapi+MMR+RTS

739

(41.0%)

27996

(97.1%)

23457

(97.0%)

3038.8

(-103.3%)

74678.5

(31.5%)

55316.7

(24.6%)

739

(41.0%)

26698

(97.2%)

18636

(97.5%)

3038.8

(-103.3%)

64302.9

(- 38.1%)

42449.7

(44.5%)

LDA+RTS

210

(83.2%)

9284
(99.0%)

4020
(99.5%)

507.3

(66.1%)

50285.1
(53.9%)

27010.3
(63.2%)

210

(83.2%)

7535
(99.2%)

4221
(99.4%)

507.3

(66.1%)

46847.2

(54.9%)

31159.9

(59.2%)

LDA+MMR+RTS

1
(99.9%)

26287

(97.3%)

22274

(97.1%)

197

(86.8%)

69353.1

(36.4%)

46072.8

(37.2%)

1
(99.9%)

22692

(97.6%)

18003

(97.7%)

12.7
(99.1%)

33241.9
(68.0%)

22300.2
(70.8%)

Figure 4: Client project execution Figure 5: Test case execution Figure 6: Test execution time

Table 5: DeBBI for parallel project execution
Without Bug Clustering With Bug Clustering
Execution Time(sec) Execution Time(sec)

First Last Average First Last Average

Random 83.5 53122.1 15026.5 83.5 51898.8 7695.1

TF.IDF

53.9

(35.2%)

68041

(-28.1%)

15916.4

(-5.9%)

53.9

(35.2%)

42494.4

(18.1%)

9024.3

(-17.3%)

TF.IDF+MMR

12.7
(84.7%)

49746.5

(6.4%)

15634

(-4.0%)

12.7
(84.7%)

9905.3
(80.9%)

2832.8
(63.2%)

Okapi

12.7
(84.7%)

51973.8

(2.2%)

15536.1

(-3.4%)

12.7
(84.7%)

50407.9

(2.9%)

7483.5

(2.7%)

Okapi+MMR

548

(-558.9%)

52171.3

(1.8%)

16080.9

(-7.0%)

548

(-558.9%)

49159.6

(5.3%)

8037.3

(-4.4%)

LDA

57

(31.4%)

46837.4
(11.8%)

9262.9
(38.4%)

57

(31.4%)

46180.8

(11.0%)

6948.8

(9.7%)

LDA+MMR

12.7
(84.7%)

47886.4

(9.9%)

10530.2

(29.9%)

12.7
(84.7%)

18754.7

(63.9%)

3386.2

(56.0%)

and test phases in our dataset. In total, there are 40,191 3rd-party

libraries used by the projects in our client project dataset. We then

sort all libraries by use frequency and randomly choose 100 libraries

from the top 300 to detect BBI bugs through DeBBI.

During our manual inspection, we found there are three types of

false positives reported by DeBBI: (1) failures triggered by Maven

POM file specifications (e.g., the specific updated library versions

are prohibited by POM.xml), (2) failures triggered by intended changes
(e.g., due to deprecated methods/implementations), and (3) failures

triggered by dependency conflicts (e.g., the library updates are not

compatible with specific versions of other libraries). Types (1) and

(2) have their corresponding specific stack traces with fixed pat-

terns. Thus, we were able to develop a rule-based method in DeBBI

Table 6: DeBBI with RTS for parallel project execution
Without Bug Clustering With Bug Clustering
Execution Time(sec) Execution Time(sec)

First Last Average First Last Average

Random 83.5 53122.1 15026.5 83.5 51898.8 7695.1

Random+RTS

150.9

(-80.7%)

19495

(63.3%)

8072.8

(46.3%)

150.9

(-80.7%)

17712.4

(65.9%)

4477.7

(41.8%)

TF.IDF+RTS

303.6

(-263.6%)

21391.5

(59.7%)

10575.2

(29.6%)

303.6

(-263.6%)

15991.7

(69.2%)

5299.4

(31.1%)

TF.IDF+MMR+RTS

197

(-135.9%)

18115.2

(65.9%)

10785.8

(28.2%)

197

(-135.9%)

12176.8

(76.5%)

4142.7

(46.2%)

Okapi+RTS

197

(-13.6%)

17437

(67.2%)

10656

(29.1%)

197

(-13.6%)

14250.2

(72.5%)

5019.6

(34.8%)

Okapi+MMR+RTS

889

(-964.7%)

20250.1

(61.9%)

11076.6

(26.3%)

889

(-964.7%)

16087.6

(69.0%)

5593.4

(27.3%)

LDA+RTS

95.7
(36.6%)

17016.2

(68.0%)

5352.6
(64.4%)

95.7
(36.6%)

11141

(78.5%)

3014.7
(60.8%)

LDA+MMR+RTS

197

(-135.9%)

15180.3
(71.4%)

9135.5

(39.2%)

197

(-135.9%)

8757.4
(83.1%)

3257.4

(57.7%)

to automatically filter out them. However, we cannot avoid the false

positives from Type (3). After manually removing 22 Type (3) false

positives, DeBBI reported 97 unique BBI bugs. To date, 19 bugs have

been confirmed as previously unknown bugs. 54 bug has been con-

firmed as previously known bugs (e.g., for COLLECTIONS-721 [16]),

while all the other bug reports are still under active discussion. Inter-

estingly, among the bug reports still under discussion, some reports

have already been confirmed by other users (e.g. "Experiencing same
issue." for reflection-277 [23]) even though not yet confirmed by the

actual library developers.

Quantitative analysis. Due to the space limitation, we only present

partial experimental results for the library projects with confirmed

119

Taming Behavioral Backward Incompatibilities via Cross-Project Testing and AnalysisICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

1 @Test

2 public void demo () {

3 Map<Path , S t r i n g > t e s t = new HashMap<Path , S t r i n g > () ;

4 Path path = Pa ths . g e t (" / tmp / t e s t / f i l e ") ;

5 t e s t . put (path , " pathMD5 ") ;

6 a s s e r t T h a t (t e s t)

7 . c on ta in sOn lyKeys (path)

8 . c on t a i n sVa l u e (" pathMD5 ") ;

9 }

Figure 7: Assertj-core-1751 [15] triggering test

previously unknown BBI bugs in Table 7. In the table, Columns

1-4 list all the libraries, the number of corresponding GitHub Stars,

the number of client projects from our dataset using the corre-

sponding libraries, and the revision ranges that we use to detect

BBIs. Columns 5-7 further present the number of unique unknown,

known, and under discussion BBI bugs reported by DeBBI for this

subset of libraries. Columns 8-13 present the First, Last, and Aver-
age values in terms of the number of test executions and execution

time for our default LDA+MMR+RTS technique (with improvement

over the Random technique shown in the parenthesis). The experi-

ment parameters used are the same as our JDK experiment. From

the table, we can observe that DeBBI can consistently improve the

BBI detection efficiency in all traced metrics, further demonstrating

the effectiveness of DeBBI.

Qualitative analysis. For the 19 confirmed previously unknown BBI

bugs, developers quickly fixed the buggy code for 4 of them, and

even added our reported test case in their regression test suites for 3

of them. For example, Figure 7 shows the test for issue Assertj-core-

1751 [15]. Method containsOnlyKeys cannot handle the case when
the containsOnlyKeysAPI is invoked on a Mapwith key type Path.
This test is challenging to generate automatically due to the special

corner case, while DeBBI is able to directly obtain such tests for free

from client projects, demonstrating the promising future of DeBBI.

Interestingly, at first one developer found it too difficult to fix it

and wanted to just add a breaking-change notice; later on, another

developer proposed a solution to finally fix it. Issue Commons-vfs-

739 [24] is triggered when using Apache Commons-vfs to parse a

MapR File System file path (shown in Figure 8). It is also challenging

to generate this test automatically since the bug will be triggered

only when the first two parameters for method parseUri are both

null and URI includes the substring ":///". Furthermore, issue Jsoup-

1274 [20] from library Jsoup, a widely used Java HTML parser, is

incurred by the change of the method select – the developers

forgot to deal with the situation when the end of the string in

method select is a space (shown in Figure 9). The method select
should trim the space first and continue to parse the string, but it

throws an exception. DeBBI is able to detect it through a special

test case that used Jsoup to parse a specific string followed by a

whitespace. The developers were also quite active in fixing issue

mybatis-spring-427 [22] reported by DeBBI, saying: "Thanks for
your report! This issue is bug(This issue was included by 5ca5f2d). We
will revert it at 2.0.4."

11 other confirmed BBI bugs are mitigated by the developers

via changing the documents, since the developers did not realize

they were BBI bugs until we submitted the reports and could not

undo the change or fix the code. These BBI bugs were mitigated

1 @Test

2 public void demo () throws F i l e S y s t emEx c ep t i o n {

3 f ina l S t r i n g URI = " maprfs : / / / " ;

4 Ur l F i l eNamePa r s e r p a r s e r = new Ur l F i l eNamePa r s e r () ;

5 Fi leName name = p a r s e r . p a r s eU r i (null , null , URI) ;

6 a s s e r t E q u a l s (URI , name . getURI ()) ;

7 }

Figure 8: Commons-vfs-739 [24] triggering test

1 @Test

2 public void demo () {

3 S t r i n g con t en t = " <p> S e l e c t Te s t " ;

4 S t r i n g B u i l d e r bodyHtml = new S t r i n g B u i l d e r () ;

5 bodyHtml . append (c on t en t) ;

6 Document document = J soup . p a r s e (bodyHtml . t o S t r i n g ()) ;

7 S t r i n g B u i l d e r nav = new S t r i n g B u i l d e r () ;

8 Elements bodyElements = document . s e l e c t (" body > ∗ ") ;

9 }

Figure 9: Jsoup-1274 [20] triggering test

by adding an announcement in the corresponding documents. For

example, the following comment is from the issue java-jwt-376 [18]:

“You are correct that this would be a breaking change, so should
have been targeted at a future major version or at the very least called
out the breaking change in the CHANGELOG.md file. Unfortunately,
at this point we cannot undo the change without breaking others
who are not handling the UnsupportedEncodingException. We should
update the Change log, so keeping this issue open to address that.
Apologies for the inconvenience, and thank you for raising this.”

For the remaining 4 confirmed BBI bugs, issues lombok-2320 [21]

and HttpAsyncClient-159 [17] cannot be easily fixed by the devel-

opers for the moment. For example, the Apache HttpAsyncClient

developers said:

“There is no much we can do about it now. If we remove the offend-
ing constructor to restore full compatibility with 4.1.3 we will break
full compatibility with 4.1.4.”

The other 2 unfixed bugs are from Apache Commons-io and

Apache Jena. They confirmed our reported BBI bugs are source

incompatibility, but cannot afford to fix them. For example, the

Apache Jena [19] developers said:

“We try to migrate gracefully, and it is a compile time error. There
is a balance between compatibility and building up technical debt.
Change away from use of FastDateFormat was forced on the code
(staying at the old version forever is not an option). Sometimes, our
understanding of what users do, and do not use, is incomplete. ”

3.6 Threats to Validity
The major internal threat to our evaluation is whether our ground

truth on incompatibility bugs is correct. For JDK, although large-

scale client testing reveals a lot of test failures, their causes are

different and may not always indicate incompatibilities of JDK.

For example, Raemaekers et al. [64] observed that library-breaking

changes have a huge impact on project compilation. To reduce

this threat, we use the test failures that are fixed when using Java

9.0.1 as the ground truth because they are incompatibility issues

confirmed by JDK developers. This solution is not perfect as we

may miss some real JDK incompatibilities and bugs that are not

noticed and confirmed by JDK developers. For the popular 3rd-

party libraries, we manually inspected all the reported cases (since

120

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang

Table 7: Effectiveness of DeBBI for Other Libraries
Project Stars Client Num Revision

Bug Num Execution Time(min) Test Case

Unkown Known Discussion First Last Average First Last Average

Commons-io 616 4,308 2.1 - 2.6 1 0 3 5.29 (99.62%) 408.45 (93.50%) 181.6 (95.37%) 245 (99.39%) 3525 (97.49%) 1428 (98.44%)

assertj-core 1,689 1,129 3.8.0 - 3.14.0 2 8 0 0.04 (99.99%) 211.6 (89.01%) 130.86 (88.60%) 1 (99.99%) 5252 (96.01%) 3767 (93.66%)

lombok 8,832 2,721 1.16.14 - 1.18.10 1 10 0 0.34 (99.31%) 227.74 (92.20%) 72.21 (95.39%) 1 (99.79%) 421 (99.25%) 175 (99.41%)

commons-vfs 103 39 2.2 - 2.6.0 1 0 0 0.96 (98.21%) 0.96 (98.21%) 0.96 (98.21%) 112 (92.21%) 112 (92.21%) 112 (92.21%)

jsoup 7,650 575 1.9.2 - 1.12.1 1 2 0 1.64 (99.60%) 39.49 (93.96%) 17.8 (96.56%) 81 (98.18%) 399 (96.25%) 243 (96.46%)

mybatis-spring 1,992 987 1.3.2 - 2.0.3 1 2 0 1.67 (97.30%) 48.29 (91.64%) 32.68 (90.23%) 1 (99.12%) 9 (99.92%) 6 (99.92%)

HttpAsyncClient 904 125 4.1.3 - 4.1.4 1 1 0 4.14 (97.27%) 7.9 (94.91%) 6.02 (96.08%) 55 (98.66%) 78 (98.14%) 66 (98.41%)

JENA 618 59 3.12.0 - 3.14.0 1 0 0 1.27 (98.52%) 1.27 (98.52%) 1.27 (98.52%) 13 (98.57%) 13 (98.57%) 13 (98.57%)

ognl 111 70 3.1 - 3.2.12 1 2 0 0.8 (97.28%) 3.52 (95.66%) 2.34 (95.81%) 5 (99.03%) 37 (98.20%) 19 (98.26%)

asciidoctorj 445 27 1.5.3 - 2.2.0 2 0 0 3.92 (92.09%) 4.4 (92.86%) 4.16 (92.52%) 6 (98.18%) 6 (98.27%) 6 (98.22%)

mybatis 12,730 1,135 3.1.1 - 3.5.3 1 7 0 1.18 (97.85%) 54.67 (93.57%) 11.88 (96.30%) 13 (92.61%) 106 (99.26%) 68 (98.71%)

java-jwt 3,323 119 3.2.0 - 3.6.0 1 1 0 0.63 (85.80%) 4.47 (96.87%) 2.55 (96.53%) 7 (77.42%) 21 (98.47%) 14 (98.00%)

mybatis-generator 4,105 202 1.3.5 - 1.4.0 1 1 1 0.27 (95.15%) 0.66 (98.95%) 0.51 (97.95%) 3 (62.50%) 3 (97.35%) 3 (93.18%)

jOOQ 3,646 88 3.9.0 - 3.12.4 1 1 1 0.74 (97.49%) 6.14 (97.22%) 3.75 (97.11%) 3 (99.23%) 27 (98.77%) 16 (98.75%)

bcpkix-jdk15on 1,110 122 1.5.9 - 1.6.4 1 0 0 12.3 (94.66%) 12.3 (94.66%) 12.3 (94.66%) 169 (97.67%) 169 (97.67%) 169 (97.67%)

activiti-engine 6,239 39 6.0.0 - 7.1.0 1 0 0 0.67 (96.20%) 0.67 (96.20%) 0.67 (96.20%) 1 (98.15%) 1 (98.15%) 1 (98.15%)

extentreports 517 43 3.0.7 - 4.1.2 1 0 0 3.22 (70.51%) 3.22 (70.51%) 3.22 (70.51%) 36 (86.86%) 36 (86.86%) 36 (86.86%)

they are more affordable than the JDK experiments) to confirm

the ground truth, and also filed corresponding bug reports for the

software developers to confirm. The major external threat to our

evaluation is whether our approach may be generalized to libraries

other than the studied ones. It should be noted that JDK is not a

single library but a collection of tens of Java packages and even

libraries developed by the 3rd-party such as SAXP libraries by XML-

DEV and DOM libraries by W3C. To reduce such threats, we have

also applied DeBBI to detect BBIs for other widely used 3rd-party

libraries from GitHub. In the future, we further plan to further apply

our DeBBI to other widely-used libraries such as the Android SDK.

4 DISCUSSIONS
Availability of Client Software In our experiment, due to the

prevalent usage of JDK, we were able to collect 2,953 client soft-

ware projects, and ran unit testing on them over JDK 8 and 9 to

detect failures. One doubt on the applicability of our approach is

whether there are also many client software projects for other li-

braries so that prioritization is necessary. Our observation is that

the popular frameworks that require extensive incompatibility de-

tection typically have lots of client software project available. For

example, Android SDK, Apache software, Eclipse API, and Chrome

API all have thousands of client projects in GitHub (as confirmed

in RQ5). On the other hand, due to the popularity of modern build

systems (Gradle/Maven) and the corresponding central repositories,

even ordinary projects can have a large number of client projects

on the central repositories. Such modern build systems support

fully automated client project retrieval, build, and test. Thus, we

can easily apply DeBBI in a fully automated way
2
.

Effectiveness of Client Software Testing Another issue with

client software testing is whether it is helpful when a large regres-

sion test suite is already available. From our experiment, we can

see that 79 JDK incompatibility bugs can be detected if client soft-

ware testing is applied before Java 9.0.0 is released. These bugs are

confirmed by JDK developers in 9.0.1, and cannot be detected by

the large regression test suite of JDK. Another benefit of client soft-

ware testing is that it always finds real bugs. Although regression

testing may also detect incompatibilities, the ones detected may

be on a cold spot of API that is never used by real client software,

2
We can also afford discarding failing client projects as online repositories provide a

huge candidate project set.

Figure 10: Example changed JDK query

Figure 11: Project hmm-lib JDK usage

Figure 12: Project ummalqura-calendar JDK usage

or triggered by a method-invocation sequence that is never used

by client software developers. In contrast, the incompatibilities

detected by client software testing usually indicate important bugs

of the library or the client software.

Why does DeBBI work? A naive approach for ranking client

projects would be simply counting the number of API terms used

by each client project. In contrast to simply counting API term

frequency, our DeBBI adopts information retrieval, which not only

counts API term frequency, but also considers API importance,

diversity, and textual information. For example, there are two JDK

client projects hmm-lib [3] and ummalqura-calendar [7] from our

data set. Figure 10 shows the portion of changed JDK query which

is related to these two client projects, while Figures 11 and 12

show the JDK usage of the client projects. Interestingly, we can see

many terms (highlighted in bold) matching terms in query. If we

only count the term frequency, hmm-lib with 125 term matches

should have a higher priority than ummalqura-calendar that only

has 67 term matches. However, in our DeBBI(TF.IDF), hmm-lib is

ranked at 2,760 with no bug and ummalqura-calendar is ranked at

442 with a real BBI issue (BugID: JDK-8008577
3
, triggered by the

3
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8008577

121

https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8008577

Taming Behavioral Backward Incompatibilities via Cross-Project Testing and AnalysisICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 13: Accumulated bugs detected
different English locale date-time long formats between JDK 8 and

JDK 9). The reason is that TF.IDF also considers the importance of

low-frequency terms Locale and Date.

Why do we need diversity enhancement? For a given query, an

information retrieval system can give us a ranked list of documents

all of which are relevant to the query. However, they might be

all the same or very similar. This is a classic diversity or novelty

issue in information retrieval. In our scenario, if DeBBI uses only

traditional information retrieval technique, the top-ranked client

projects might detect the same bugs repeatedly. Therefore, we use

the MMR algorithm to solve this issue to detect more unique bugs

faster. In Figure 13, the solid and dashed lines present the effective-

ness of detecting unique BBI bugs for JDK when applying LDA and

LDA+MMR, respectively. The x-axis is the number of projects we

need to run, the y-axis is the percentage of unique JDK BBI bugs

we can detect. We observed that LDA+MMR found the first unique

bug at the 1st position and the last unique bug at the 1029rd posi-

tion, while LDA found the first/last unique bug at the 43rd/2333rd

position, demonstrating the effectiveness of diversity enhancement

for further boosting DeBBI.

5 RELATEDWORKS
5.1 Test Prioritization
Test-case prioritization is a well studied research area. As for generic

prioritization strategies, the total and additional strategies are the

most widely-used prioritization strategies [70], and reported empir-

ical results show that the additional strategy is more effective than

the total strategy in most cases. There also have been a number of

research efforts seeking for other optimal prioritization strategies.

For example, Li et al. [52] proposed a 2-optimal strategy based on

two different strategies: hill-climbing, and genetic programming.

respectively. Jiang et al. [42] proposed an adaptive random strat-

egy for test-case prioritization. Bryce and Memon [29] proposed

to prioritize test cases (i.e., event sequences) for event-based GUI

software. As each test case is an event sequence in GUI testing, their

approach tries to select event sequences to cover different event in-

teractions as early as possible. Zhang et al. [85] proposed a generic

strategy that has flavor of both total and additional strategies.

Besides proposing generic prioritization strategies, researchers

have also investigated test prioritization using different levels of

code coverage. There have been research work based on statement

and branch coverage [70], function coverage [35], block cover-

age [34], modified condition/decision coverage [34], etc. There

have also been research [44] on test-case prioritization using cov-

erage of system models. Mei et al. [57] investigated criteria based

on dataflow coverage for testing service-oriented software. More

recently, Saha et al. [72] utilized the textual similarity between tests

and code changes based on IR to perform test prioritization. In this

paper, we are prioritizing client software projects instead of test

cases, and thus we face two very different challenges. First, since

it takes huge amount of time to execute tests of all client software

projects, our approach must be static (i.e., not using any runtime in-

formation). Second, compared with test cases which are designed to

cover different parts of a software project, client software projects

contain much more redundancy. Therefore, to overcome these chal-

lenges, we developed an IR-based approach and further optimized

it considering the diversity of term coverage (based on MMR) and

test relevance (via extending static RTS).

5.2 Automated Test Generation
Another area that is related to our work is test generation based

on existing client code. Suresh et al. [78] proposed an approach to

automatically generate test cases by mining source code from client

software projects, and later extended the technique with mining

of dynamic execution traces [77, 79]. Bozkurt and Harman [28]

proposed an approach to generate test cases from web service

transactions. Pradel and Gross [63] combined specification mining

from client code and test generation to detect API usage bugs.

More recently, Ma et. al. [54] proposed to use library test cases to

guide test-case generation for client software. Reiss [66] proposed

to use semantic code search to find potential client code for test

generation. Research efforts in this area focuses on generating test

cases for one software project based on source code or test code

of the current or other software projects. Therefore, they actually

solve a different problem, and suffer from the general problems

of test generation, such as the test oracle and unrealistic test (i.e.,

exploration of method invocation sequences that never happens

in reality) problems, when directly used for library code testing.

In contrast, our prioritization technique opens a new dimension

via utilizing the large number of existing client project tests in the

wild for detecting library BBIs, and can be complementary to these

existing test generation techniques.

6 CONCLUSION AND FUTUREWORK
In this work, we propose to detect library backward incompati-

bilities using the large number of client project test suites in the

wild, i.e., cross-project library upgrade testing. However, it typically

involves huge testing efforts. Therefore, we further present a novel

approach to prioritizing software projects in large-scale client soft-

ware testing based on information retrieval, DeBBI. Furthermore,

we also further optimize DeBBI via considering the API-use di-

versity (based on MMR) and test relevance (via extending static

RTS). Our evaluation shows that, compared with the baseline ran-

dom project prioritization, our approach can reduce the time to

detect the first and average unique BBI bug by 99.1% and 70.8% for

JDK, and detect various previously unknown BBI bugs for popular

3rd-party libraries.

7 ACKNOWLEDGEMENTS
This work is partially supported by National Science Foundation

under Grant Nos. CCF-1763906, CCF-1846467, and CCF-1942430.

122

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang

REFERENCES
[1] 2007. Criticism of Windows Vista. https://play.google.com/store/apps/details?

id=com.sohu.inputmethod.sogou&hl=en. (2007). Accessed: 2014-08-30.

[2] 2014. Sougou. https://play.google.com/store/apps/details?id=com.sohu.

inputmethod.sogou&hl=en. (2014). Accessed: 2014-08-30.

[3] 2016. This library implements Hidden Markov Models (HMM) for time-

inhomogeneous Markov processes. (2016). https://github.com/bmwcarit/

hmm-lib.

[4] 2018. Android Software Development Kit. (2018). https://developer.android.com/.

[5] 2018. Apache Struts. (2018). https://struts.apache.org/.

[6] 2018. ASM Bytecode Manipulation Framework. (2018). http://asm.ow2.org/.

[7] 2018. Implementation of java.util.Calendar for the UmmAl-Qura calendar system.

(2018). https://github.com/msarhan/ummalqura-calendar.

[8] 2018. Indri. (2018). http://www.lemurproject.org/indri.php.

[9] 2018. Java Development Kit. (2018). http://www.oracle.com/technetwork/java/

javase/downloads/index.html/.

[10] 2018. jDeps. (2018). https://docs.oracle.com/javase/9/tools/jdeps.htm.

[11] 2018. jdom. (2018). http://www.jdom.org/.

[12] 2018. Log4j. (2018). http://logging.apache.org/log4j.

[13] 2018. Square Libraries. (2018). https://github.com/square.

[14] 2018. The Apache Software Foundation. (2018). http://www.apache.org/.

[15] 2019. assertj-core. https://github.com/joel-costigliola/assertj-core/issues/1751.

(2019).

[16] 2019. COLLECTIONS-721. https://issues.apache.org/jira/browse/

COLLECTIONS-721. (2019).

[17] 2019. httpasyncclient. https://issues.apache.org/jira/browse/HTTPASYNC-159.

(2019).

[18] 2019. java-jwt. https://github.com/auth0/java-jwt/issues/376. (2019).

[19] 2019. jena-arq. https://issues.apache.org/jira/browse/JENA-1819. (2019).

[20] 2019. Jsoup. https://github.com/jhy/jsoup/issues/1274. (2019).

[21] 2019. lombok. https://github.com/rzwitserloot/lombok/issues/2320. (2019).

[22] 2019. mybatis-spring. https://github.com/mybatis/spring/issues/427. (2019).

[23] 2019. reflection. https://github.com/ronmamo/reflections/issues/277. (2019).

[24] 2019. vfs. https://issues.apache.org/jira/browse/VFS-7392320. (2019).

[25] Hazeline U Asuncion, Arthur U Asuncion, and Richard N Taylor. 2010. Software

traceability with topic modeling. In Proceedings of the 32nd ACM/IEEE interna-
tional conference on Software Engineering-Volume 1. ACM, 95–104.

[26] Ittai Balaban, Frank Tip, and Robert Fuhrer. 2005. Refactoring Support for Class

Library Migration. In Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications. 265–279.

[27] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.

Journal of machine Learning research 3, Jan (2003), 993–1022.

[28] M. Bozkurt and M. Harman. 2011. Automatically generating realistic test input

from web services. In Proceedings of 2011 IEEE 6th International Symposium
on Service Oriented System (SOSE). 13–24. https://doi.org/10.1109/SOSE.2011.

6139088

[29] Renée C. Bryce and Atif M. Memon. 2007. Test suite prioritization by interaction

coverage. In Workshop on Domain specific approaches to software test automation:
in conjunction with the 6th ESEC/FSE joint meeting (DOSTA ’07). ACM, New York,

NY, USA, 1–7. https://doi.org/10.1145/1294921.1294922

[30] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based

reranking for reordering documents and producing summaries. In Proceedings of
the 21st annual international ACM SIGIR conference on Research and development
in information retrieval. ACM, 335–336.

[31] Kingsum Chow and D. Notkin. 1996. Semi-automatic update of applications in

response to library changes. In Software Maintenance 1996, Proceedings., Interna-
tional Conference on. 359–368.

[32] Bradley Cossette and Robert J. Walker. 2012. Seeking the ground truth: a retroac-

tive study on the evolution and migration of software libraries. In 20th ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE-20), SIG-
SOFT/FSE’12, Cary, NC, USA - November 11 - 16, 2012. 55.

[33] D. Dig and R. Johnson. 2005. The role of refactorings in API evolution. In Software
Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International Conference
on. 389–398.

[34] Hyunsook Do, Gregg Rothermel, and Alex Kinneer. 2004. Empirical Studies of

Test Case Prioritization in a JUnit Testing Environment. In ISSRE. 113–124.
[35] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2000. Priori-

tizing test cases for regression testing. In Proceedings of the 2000 ACM SIGSOFT
international symposium on Software testing and analysis (ISSTA ’00). ACM, New

York, NY, USA, 102–112. https://doi.org/10.1145/347324.348910

[36] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-

proving regression testing in continuous integration development environments.

In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 235–245.

[37] Milos Gligoric, Lamyaa Eloussi, andDarkoMarinov. 2015. Practical regression test

selection with dynamic file dependencies. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis. ACM, 211–222.

[38] Jade Goldstein, Vibhu Mittal, Jaime Carbonell, and Mark Kantrowitz. 2000. Multi-

document summarization by sentence extraction. In Proceedings of the 2000
NAACL-ANLP Workshop on Automatic summarization. Association for Computa-

tional Linguistics, 40–48.

[39] Shengbo Guo and Scott Sanner. 2010. Probabilistic latent maximal marginal rele-

vance. In Proceedings of the 33rd international ACM SIGIR conference on Research
and development in information retrieval. ACM, 833–834.

[40] Djoerd Hiemstra. 2001. Using language models for information retrieval. (2001).

[41] Liangjie Hong, Ovidiu Dan, and Brian D Davison. 2011. Predicting popular

messages in twitter. In Proceedings of the 20th international conference companion
on World wide web. ACM, 57–58.

[42] Bo Jiang, Zhenyu Zhang, W. K. Chan, and T. H. Tse. 2009. Adaptive Random

Test Case Prioritization. In Proceedings of the 2009 IEEE/ACM International Con-
ference on Automated Software Engineering (ASE ’09). IEEE Computer Society,

Washington, DC, USA, 233–244. https://doi.org/10.1109/ASE.2009.77

[43] Seokhwan Kim, Yu Song, Kyungduk Kim, Jeong-Won Cha, and Gary Geunbae

Lee. 2006. Mmr-based active machine learning for bio named entity recognition.

In Proceedings of the Human Language Technology Conference of the NAACL,
Companion Volume: Short Papers. Association for Computational Linguistics,

69–72.

[44] Bogdan Korel, Luay Ho Tahat, and Mark Harman. 2005. Test Prioritization Using

System Models. In ICSM. 559–568.

[45] Ralf Krestel, Peter Fankhauser, and Wolfgang Nejdl. 2009. Latent dirichlet allo-

cation for tag recommendation. In Proceedings of the third ACM conference on
Recommender systems. ACM, 61–68.

[46] David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima.

1995. Class firewall, test order, and regression testing of object-oriented programs.

JOOP 8, 2 (1995), 51–65.

[47] Thomas K Landauer, Peter W Foltz, and Darrell Laham. 1998. An introduction to

latent semantic analysis. Discourse processes 25, 2-3 (1998), 259–284.
[48] Changki Lee and Gary Geunbae Lee. 2006. Information gain and divergence-based

feature selection for machine learning-based text categorization. Information
processing & management 42, 1 (2006), 155–165.

[49] Dik L Lee, Huei Chuang, and Kent Seamons. 1997. Document ranking and the

vector-space model. IEEE software 14, 2 (1997), 67–75.
[50] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and

Darko Marinov. 2016. An extensive study of static regression test selection

in modern software evolution. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 583–594.

[51] Hareton KN Leung and Lee White. 1990. A study of integration testing and

software regression at the integration level. In ICSM. 290–301.

[52] Zheng Li, Mark Harman, and Robert M. Hierons. 2007. Search Algorithms for

Regression Test Case Prioritization. IEEE Trans. Software Eng. 33, 4 (2007), 225–
237.

[53] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. 2007.

Recovering traceability links in software artifact management systems using

information retrieval methods. ACM Transactions on Software Engineering and
Methodology (TOSEM) 16, 4 (2007), 13.

[54] Lei Ma, Cheng Zhang, Bing Yu, and Jianjun Zhao. 2016. Retrofitting automatic

testing through library tests reusing. In 2016 IEEE 24th International Conference
on Program Comprehension (ICPC). 1–4.

[55] Yoëlle S Maarek, Daniel M Berry, and Gail E Kaiser. 1991. An information retrieval

approach for automatically constructing software libraries. IEEE Transactions on
software Engineering 17, 8 (1991), 800–813.

[56] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An Empirical Study of

API Stability and Adoption in the Android Ecosystem. In Proceedings of the 2013
IEEE International Conference on Software Maintenance (ICSM ’13). 70–79.

[57] Lijun Mei, Zhenyu Zhang, W. K. Chan, and T. H. Tse. 2009. Test case prioritization

for regression testing of service-oriented business applications. In Proceedings
of the 18th international conference on World wide web (WWW ’09). ACM, New

York, NY, USA, 901–910. https://doi.org/10.1145/1526709.1526830

[58] Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. 2015. A Study on Behav-

ioral Backward Incompatibilities of Java Software Libraries. In Proceedings of the
2017 International Symposium on Software Testing and Analysis. 215–225.

[59] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression

testing to large software systems. In FSE. 241–251.
[60] Iadh Ounis, Gianni Amati, Vassilis Plachouras, Ben He, Craig Macdonald, and

Christina Lioma. 2006. Terrier: A high performance and scalable information

retrieval platform. In Proceedings of the OSIR Workshop. 18–25.
[61] Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic Smyth,

and Max Welling. 2008. Fast collapsed gibbs sampling for latent dirichlet alloca-

tion. In Proceedings of the 14th ACMSIGKDD international conference on Knowledge
discovery and data mining. ACM, 569–577.

[62] Martin F Porter. 2001. Snowball: A language for stemming algorithms. (2001).

[63] Michael Pradel and Thomas R. Gross. 2012. Leveraging Test Generation and

Specification Mining for Automated Bug Detection Without False Positives. In

Proceedings of the 34th International Conference on Software Engineering (ICSE
’12). IEEE Press, Piscataway, NJ, USA, 288–298. http://dl.acm.org/citation.cfm?

id=2337223.2337258

123

https://play.google.com/store/apps/details? id=com.sohu.inputmethod.sogou&hl=en
https://play.google.com/store/apps/details? id=com.sohu.inputmethod.sogou&hl=en
https://play.google.com/store/apps/details? id=com.sohu.inputmethod.sogou&hl=en
https://play.google.com/store/apps/details? id=com.sohu.inputmethod.sogou&hl=en
https://github.com/bmwcarit/hmm-lib
https://github.com/bmwcarit/hmm-lib
https://developer.android.com/
https://struts.apache.org/
http://asm.ow2.org/
https://github.com/msarhan/ummalqura-calendar
http://www.lemurproject.org/indri.php
http://www.oracle.com/technetwork/java/javase/ downloads/index.html/
http://www.oracle.com/technetwork/java/javase/ downloads/index.html/
https://docs.oracle.com/javase/9/tools/jdeps.htm
http://www.jdom.org/
http://logging.apache.org/log4j
https://github.com/square
http://www.apache.org/
https://github.com/joel-costigliola/assertj-core/issues/1751
https://issues.apache.org/jira/browse/COLLECTIONS-721
https://issues.apache.org/jira/browse/COLLECTIONS-721
https://issues.apache.org/jira/browse/HTTPASYNC-159
https://github.com/auth0/java-jwt/issues/376
https://issues.apache.org/jira/browse/JENA-1819
https://github.com/jhy/jsoup/issues/1274
https://github.com/rzwitserloot/lombok/issues/2320
https://github.com/mybatis/spring/issues/427
https://github.com/ronmamo/reflections/issues/277
https://issues.apache.org/jira/browse/VFS-7392320
https://doi.org/10.1109/SOSE.2011.6139088
https://doi.org/10.1109/SOSE.2011.6139088
https://doi.org/10.1145/1294921.1294922
https://doi.org/10.1145/347324.348910
https://doi.org/10.1109/ASE.2009.77
https://doi.org/10.1145/1526709.1526830
http://dl.acm.org/citation.cfm?id=2337223.2337258
http://dl.acm.org/citation.cfm?id=2337223.2337258

Taming Behavioral Backward Incompatibilities via Cross-Project Testing and AnalysisICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

[64] S. Raemaekers, A. van Deursen, and J. Visser. 2017. Semantic Versioning and

Impact of Breaking Changes in the Maven Repository. J. Syst. Softw. 129, C (July

2017), 140–158. https://doi.org/10.1016/j.jss.2016.04.008

[65] Adrian E Raftery and Steven Lewis. 1991. How many iterations in the Gibbs sam-
pler? Technical Report. WASHINGTON UNIV SEATTLE DEPT OF STATISTICS.

[66] Steven P. Reiss. 2014. Towards Creating Test Cases Using Code Search. In 30th
IEEE International Conference on Software Maintenance and Evolution, Victoria,
BC, Canada, September 29 - October 3, 2014. 436–440. https://doi.org/10.1109/

ICSME.2014.69

[67] Stephen Robertson, Hugo Zaragoza, and Michael Taylor. 2004. Simple BM25

extension to multiple weighted fields. In Proceedings of the thirteenth ACM inter-
national conference on Information and knowledge management. ACM, 42–49.

[68] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu,

Mike Gatford, et al. 1995. Okapi at TREC-3. Nist Special Publication Sp 109 (1995),
109.

[69] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing regression test selec-

tion techniques. IEEE Transactions on software engineering 22, 8 (1996), 529–551.

[70] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 1999.

Test Case Prioritization: An Empirical Study. In ICSM. 179–188.

[71] Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry. 2013.

Improving bug localization using structured information retrieval. In ASE. 345–
355.

[72] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry. 2015. An Information Retrieval

Approach for Regression Test Prioritization Based on Program Changes. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
268–279. https://doi.org/10.1109/ICSE.2015.47

[73] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model

for automatic indexing. Commun. ACM 18, 11 (1975), 613–620.

[74] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.

A latent semantic model with convolutional-pooling structure for information

retrieval. In Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management. ACM, 101–110.

[75] August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing and

combining test-suite reduction and regression test selection. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering. ACM, 237–247.

[76] Stephen W Thomas. 2011. Mining software repositories using topic models. In

Proceedings of the 33rd International Conference on Software Engineering. ACM,

1138–1139.

[77] Suresh Thummalapenta, Jonathan de Halleux, Nikolai Tillmann, and Scott

Wadsworth. 2010. DyGen: Automatic Generation of High-Coverage Tests via

Mining Gigabytes of Dynamic Traces. In Tests and Proofs, Gordon Fraser and

Angelo Gargantini (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 77–93.

[78] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and

Wolfram Schulte. 2009. MSeqGen: Object-oriented Unit-test Generation via

Mining Source Code. In Proceedings of the the 7th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering (ESEC/FSE ’09). ACM, New York, NY, USA,

193–202. https://doi.org/10.1145/1595696.1595725

[79] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and

Zhendong Su. 2011. Synthesizing Method Sequences for High-coverage Testing.

In Proceedings of the 2011 ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications (OOPSLA ’11). ACM, New York,

NY, USA, 189–206.

[80] Kai Tian, Meghan Revelle, and Denys Poshyvanyk. 2009. Using latent dirichlet al-

location for automatic categorization of software. InMining Software Repositories,
2009. MSR’09. 6th IEEE International Working Conference on. IEEE, 163–166.

[81] Yuan Tian, David Lo, and Chengnian Sun. 2012. Information retrieval based

nearest neighbor classification for fine-grained bug severity prediction. In Reverse
Engineering (WCRE), 2012 19th Working Conference on. IEEE, 215–224.

[82] Ellen M Voorhees, Donna K Harman, et al. 2005. TREC: Experiment and evaluation
in information retrieval. Vol. 1. MIT press Cambridge.

[83] Xiaogang Wang and Eric Grimson. 2008. Spatial latent dirichlet allocation. In

Advances in neural information processing systems. 1577–1584.
[84] Chengxiang Zhai and John Lafferty. 2004. A study of smoothing methods for lan-

guage models applied to information retrieval. ACM Transactions on Information
Systems (TOIS) 22, 2 (2004), 179–214.

[85] Lingming Zhang, Dan Hao, Lu Zhang, Gregg Rothermel, and Hong Mei. 2013.

Bridging the gap between the total and additional test-case prioritization strate-

gies. In ICSE. 192–201.
[86] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-

inducing program edits based on spectrum information. In ICSM. 23–32.

[87] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?

more accurate information retrieval-based bug localization based on bug reports.

In ICSE. 14–24.

124

https://doi.org/10.1016/j.jss.2016.04.008
https://doi.org/10.1109/ICSME.2014.69
https://doi.org/10.1109/ICSME.2014.69
https://doi.org/10.1109/ICSE.2015.47
https://doi.org/10.1145/1595696.1595725

